Skip to main content
Log in

Synthesis and Thermal Properties of Myristic Acid/Nano-TiO2/Carbon Additives Composite Phase Change Materials

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

A novel composite phase change material, myristic acid (MA)/nano-titanium dioxide (nano-TiO2)/carbon additives, was synthesized via a melt blending method, in which MA serves as phase change material, nano-TiO2 acts as support material, and carbon additives are used as thermally conductive enhancer. A series of leakage tests have shown that MA/nano-TiO2 can maintain shape stability during the phase transition when the content of MA in MA/nano-TiO2 does not exceed 50 %. The FT-IR and XRD results demonstrated that there is no chemical reaction among the various components of the MA/nano-TiO2/carbon additive. When the content of MA is 50 %, the melting temperature of MA/nano-TiO2/carbon additives is about 54 °C and the melting enthalpy is about 80 J·g−1. When the content of all three carbon additives, multiwall carbon nanotubes, graphene, and expanded graphite, is 2.5 %, the corresponding thermal conductivity of MA/nano-TiO2/carbon additives is 0.532 W/(m·K), 1.128 W/(m·K), and 1.382 W/(m·K), respectively. The thermal conductivity of these three types of MA/nano-TiO2/additives is 1.23, 2.62, and 3.21 times that of MA/TiO2, respectively. Moreover, the decomposition temperature of these three types MA/nano-TiO2/carbon additives composites is around 245 °C. Therefore, the working ambient temperature of MA/nano-TiO2/additive composites should be lower than 245 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The raw data required to reproduce these findings are available upon request to the corresponding author.

References

  1. J. Li, L.S. Jia, L.J. Li, Z.H. Huang, Y. Chen, Hybrid microencapsulated phase-change material and carbon nanotube suspensions toward solar energy conversion and storage. Energies 13, 4401 (2020)

    Article  Google Scholar 

  2. S.Y. Zhao, J.H. Li, Y.F. Wu, S. Song, L.J. Liu, Three-dimensional interconnected porous TiO2 ceramics for high-temperature thermal storage. Renewable Energy 178, 701–708 (2021)

    Article  Google Scholar 

  3. L.X. Chai, X.D. Wang, D.Z. Wu, Development of bifunctional microencapsulated phase change materials with crystalline titanium dioxide shell for latent-heat storage and photocatalytic effectiveness. Appl. Energy 138, 661–674 (2015)

    Article  ADS  Google Scholar 

  4. Y.W. Zhang, K.Y. Sun, Y. Kou, S.X. Wang, Q. Shi, A facile strategy of constructing composite form-stable phase change materials with superior high thermal conductivity using silica gel industrial wastes. Sol. Energy 207, 51–58 (2020)

    Article  ADS  Google Scholar 

  5. D.K. Li, Y.L. Tang, X.C. Zuo, X.Y. Zhang, X.G. Zhao, Y.T. Zhang, H.M. Yang, Functionally constructed magnetic-dielectric mineral microspheres for efficient thermal energy storage and microwave absorption. J. Colloid Interfaces Sci. 650, 764–774 (2023)

    Article  ADS  Google Scholar 

  6. P.P. Deka, A.K. Ansu, R.K. Sharma, V.V. Tyagi, A. Sarı, Development and characterization of form-stable porous TiO2/tetradecanoic acid based composite PCM with long-term stability as solar thermal energy storage material. Int. J. Energy Res. 44, 10044–10057 (2020)

    Article  Google Scholar 

  7. Q. He, H. Fei, J.H. Zhou, X.M. Liang, Y.C. Pan, Utilization of carbonized water hyacinth for effective encapsulation and thermal conductivity enhancement of phase change energy storage materials. Constr. Build. Mater. 372, 130841 (2023)

    Article  Google Scholar 

  8. J.F. Li, L.M. Dong, D. Zhang, X.P. Chen, Y. Xue, Y.H. Guan, Y.M. Li, Mesoporous carbon spheres modified polyurethane sponge/phase change material composites: photothermal conversion, thermal storage and efficient recovery of high-viscosity crude oil. Carbon 214, 118372 (2023)

    Article  Google Scholar 

  9. B.E. Jebasingh, A.V. Arasu, Characterisation and stability analysis of eutectic fatty acid as a low cost cold energy storage phase change material. J. Energy Storage 31, 101708 (2020)

    Article  Google Scholar 

  10. H. Nazir, M. Batool, M. Ali, A.M. Kannan, Fatty acids based eutectic phase change system for thermal energy storage applications. Appl. Therm. Eng. 142, 466–475 (2018)

    Article  Google Scholar 

  11. Y. Liu, Y. Liu, Y.H. Chen, Synthesis and characteristics of microencapsulated decanol with TiO2 shell as composites for cold energy storage. Mater. Sci. 27, 425–430 (2021)

    Google Scholar 

  12. F. Tang, L. Cao, G.Y. Fang, Preparation and thermal properties of stearic acid/titanium dioxide composites as shape-stabilized phase change materials for building thermal energy storage. Energy Build. 80, 352–357 (2014)

    Article  Google Scholar 

  13. C.E. Li, H. Yu, Y. Song, M. Wang, Z.Y. Liu, A n-octadecane/hierarchically porous TiO2 form-stable PCM for thermal energy storage. Renew. Energy 145, 1465–1473 (2020)

    Article  Google Scholar 

  14. Q.Y. Liu, T. Xiao, L. Geng, C.H. Liu, In situ encapsulation of phase change material by synergistic interaction of polymethyl methacrylate and nano-TiO2. J. Energ. Storage 67, 107633 (2023)

    Article  Google Scholar 

  15. J. Li, L.J. Li, H.C. Wang, X.Y. Zhu, Y. Chen, L.S. Jia, Microencapsulation of molten salt in titanium shell for high-temperature latent functional thermal fluid. Energ. Technol. 8, 2000550 (2020)

    Article  Google Scholar 

  16. J.Y. Wang, J. Xu, Y. He, Novel smart textile with ultraviolet shielding and thermo-regulation fabricated via electrospinning. J. Energ. Storage 42, 103094 (2021)

    Article  Google Scholar 

  17. H.Z. Zhang, Y.J. Zou, Y.J. Sun, L.X. Sun, F. Xu, J. Zhang, H.Y. Zhou, A novel thermal-insulating film incorporating microencapsulated phase-change materials for temperature regulation and nano-TiO2 for UV-blocking. Sol. Energy Mater. Sol. Cells 137, 210–218 (2015)

    Article  Google Scholar 

  18. L. Cao, F. Tang, G.Y. Fang, Preparation and characteristics of microencapsulated palmitic acid with TiO2 shell as shape-stabilized thermal energy storage materials. Sol. Energy Mater. Sol. Cells 123, 183–188 (2014)

    Article  Google Scholar 

  19. K.R. Kumar, K.R. Balasubramanian, G.P. Kumar, C.B. Kumar, M.M. Cheepu, Experimental Investigation of nano-encapsulated molten salt for medium-temperature thermal storage systems and modeling of neural networks. Int. J. Thermophys. 43, 145 (2022)

    Article  ADS  Google Scholar 

  20. M. Nikoonahad, S.M. Sadrameli, F.A. Roghabadi, Preparation and optimization of nano-encapsulated capric acid being as a renewable phase change material with TiO2 shell as shape-stabilized thermal energy storage material. J. Therm. Anal. Calorim. 148, 10735–10747 (2023)

    Article  Google Scholar 

  21. S.T. Latibari, M. Mehrali, M. Mehrali, A.B.M. Afifi, T.M.I. Mahlia, A.R. Akhiani, H.S.C. Metselaar, Facile synthesis and thermal performances of stearic acid/titania core/shell nanocapsules by sol–gel method. Energy 85, 635–644 (2015)

    Article  Google Scholar 

  22. J.H. Wang, X.Y. Zhai, Z.R. Zhong, X.W. Zhang, H. Peng, Nanoencapsulated n-tetradecane phase change materials with melamine–urea–formaldehyde–TiO2 hybrid shell for cold energy storage. Colloids Surf. A 636, 128162 (2022)

    Article  Google Scholar 

  23. H.B. Chen, R. Zhao, C.C. Wang, L.Y. Feng, S.Q. Li, Y.T. Gong, Preparation and characterization of microencapsulated phase change materials for solar heat collection. Energies 15, 5354 (2022)

    Article  Google Scholar 

  24. M. Ghufran, D. Huitink, Synthesis and thermal performance of nano-sized paraffin-based titania encapsulated PCMs via sol–gel method. J. Therm. Anal. Calorim. 148, 11629–11640 (2023)

    Article  Google Scholar 

  25. Y.L. Li, J.H. Li, Y. Deng, W.M. Guan, X. Wang, T.T. Qian, Preparation of paraffin/porous TiO2 foams with enhanced thermal conductivity as PCM, by covering the TiO2 surface with a carbon layer. Appl. Energy 171, 37–45 (2016)

    Article  ADS  Google Scholar 

  26. X.Y. Zhang, C.Q. Zhu, G.Y. Fang, Preparation and thermal properties of n-eicosane/nano-SiO2/expanded graphite composite phase-change material for thermal energy storage. Mater. Chem. Phys. 240, 122178 (2020)

    Article  Google Scholar 

  27. J.W. Qin, Y.K. Chen, C.L. Xu, G.Y. Fang, Synthesis and thermal properties of 1-octadecanol/nano-TiO2/carbon nanofiber composite phase change materials for thermal energy storage. Mater. Chem. Phys. 272, 125041 (2021)

    Article  Google Scholar 

  28. L. Qiu, K.N. Yan, Y.H. Feng, X.L. Liu, Nano additives-enhanced PEG/AlN composites with high cycle stability to improve thermal and heat storage properties. Energy 278, 127794 (2023)

    Article  Google Scholar 

  29. A. Arshad, M. Jabbal, L. Shi, J. Darkwa, N.J. Weston, Y.Y. Yan, Development of TiO2/RT-35HC based nanocomposite phase change materials (NCPCMs) for thermal management applications. Sustainable Energy Technol. Assess. 43, 100865 (2021)

    Article  Google Scholar 

  30. H. Zhang, W.Z. Wang, T.W. Fu, G.Y. Fang, Fabrication and thermal properties of novel myristic acid/MgO/BN composite phase change materials for thermal energy storage. J. Mater. Res. 38, 3151–3159 (2023)

    Article  ADS  Google Scholar 

  31. V.K. Singh, D. Kumar, Sanjay, Thermal characteristics of hydrated salt blended with TiO2 for thermal energy storage. Heat Transf. 51, 5368–5385 (2022)

  32. H. Javadi, J.F. Urchueguia, S.S.M. Ajarostaghi, B. Badenes, Numerical study on the thermal performance of a single u-tube borehole heat exchanger using nano-enhanced phase change materials. Energies 13, 5156 (2020)

    Article  Google Scholar 

  33. L.J. Zhang, P. Yang, W. Li, J.J. Klemes, M. Zeng, Q.W. Wang, A new structure of PCHE with embedded PCM for attenuating temperature fluctuations and its performance analysis. Energy 254, 124462 (2022)

    Article  Google Scholar 

  34. Q. He, H. Fei, J.H. Zhou, W.Q. Du, Y.C. Pan, X.M. Liang, Preparation and characteristics of lauric acid-myristic acid-based ternary phase change materials for thermal storage. Mater. Today Commun. 32, 104058 (2022)

    Article  Google Scholar 

  35. Z.X. Fan, Y.C. Zhao, Y.F. Ding, Y. Shi, X.Y. Liu, D.H. Jiang, Fabrication and comprehensive analysis of expanded perlite impregnated with myristic acid-based phase change materials as composite materials for building thermal management. J. Energ. Storage 55, 105710 (2022)

    Article  Google Scholar 

  36. M.A. Hayat, Y.Z. Yang, L. Li, M. Bevilacqua, Y.K. Chen, Preparation and thermophysical characterisation analysis of potential nano-phase transition materials for thermal energy storage applications. J. Mol. Liq. 376, 121464 (2023)

    Article  Google Scholar 

Download references

Funding

This research work was funded by the National Natural Science Foundation of China (Grant no. 51676095).

Author information

Authors and Affiliations

Authors

Contributions

TWF contributed to methodology, investigation, and writing of the original draft. WZW contributed to investigation, reviewing of the manuscript. GYF contributed to supervision, project administration, funding acquisition, and reviewing, and editing of the manuscript.

Corresponding author

Correspondence to Guiyin Fang.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, T., Wang, W. & Fang, G. Synthesis and Thermal Properties of Myristic Acid/Nano-TiO2/Carbon Additives Composite Phase Change Materials. Int J Thermophys 45, 50 (2024). https://doi.org/10.1007/s10765-024-03346-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-024-03346-y

Keywords

Navigation