Skip to main content
Log in

Computationally efficient stress reconstruction from full-field strain measurements

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Stress reconstruction based on experimentally acquired full-field strain measurements is computationally expensive when using conventional implicit stress integration algorithms. The computational burden associated with repetitive stress reconstruction is particularly relevant when inversely characterizing plastic material behaviour via inverse methods, like the nonlinear Virtual Fields Method (VFM). Spatial and temporal down-sampling of the available full-field strain data is often used to mitigate the computational effort. However, for metals subjected to non-linear strain paths, temporal down-sampling of the strain fields leads to erroneous stress states biasing the identification accuracy of the inverse method. Hence, a significant speedup factor of the stress integration algorithm is required to fully exploit the experimental data acquired by Digital Image Correlation (DIC). To this end, we propose an explicit stress integration algorithm that is independent on the number of images (i.e. strain fields) taken into account in the stress reconstruction. Theoretically, the proposed method eliminates the need for spatial and temporal down-sampling of the experimental full-field data used in the nonlinear VFM. Finally, the proposed algorithm is also beneficial in the emerging field of real-time DIC applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Pierron F, Grédiac M (2020) Towards material testing 2.0 A review of test design for identification of constitutive parameters from full-field measurements. Strain 57:e12370. https://doi.org/10.1111/str.12370

    Article  Google Scholar 

  2. Bouda P, Langrand B, Notta-Cuvier D, Markiewicz E, Pierron F (2019) A computational approach to design new tests for viscoplasticity characterization at high strain-rates. Comput Mech 64:1639–1654. https://doi.org/10.1007/s00466-019-01742-y

    Article  MathSciNet  Google Scholar 

  3. Grédiac M, Pierron F, Avril S, Toussaint E, Rossi M (2012) Virtual fields method. Full-field measurements and identification in solid mechanics. Wiley, New Jersey, pp 301–330. https://doi.org/10.1002/9781118578469.ch11

    Book  Google Scholar 

  4. Pierron F, Zhavoronok S, Grédiac M (2000) Identification of the through-thickness properties of thick laminated tubes using the virtual fields method. Int J Solids Struct 37:4437–4453. https://doi.org/10.1016/S0020-7683(99)00149-3

    Article  Google Scholar 

  5. Claire D, Hild F, Roux S (2004) A finite element formulation to identify damage fields: the equilibrium gap method. Int J Numer Meth Eng 61:189–208. https://doi.org/10.1002/nme.1057

    Article  Google Scholar 

  6. Pagnacco E, Moreau A, Lemosse D (2007) Inverse strategies for the identification of elastic and viscoelastic material parameters using full-field measurements. Mater Sci Eng, A 452–453:737–745. https://doi.org/10.1016/j.msea.2006.10.122

    Article  CAS  Google Scholar 

  7. Bui HD, Constantinescu A, Maigre H (2004) Numerical identification of linear cracks in 2D elastodynamics using the instantaneous reciprocity gap. Inverse Prob 20:993. https://doi.org/10.1088/0266-5611/20/4/001

    Article  MathSciNet  ADS  Google Scholar 

  8. Mathieu F, Leclerc H, Hild F, Roux S (2015) Estimation of Elastoplastic Parameters via Weighted FEMU and Integrated-DIC. Exp Mech 55:105–119. https://doi.org/10.1007/s11340-014-9888-9

    Article  Google Scholar 

  9. Kajberg J, Lindkvist G (2004) Characterisation of materials subjected to large strains by inverse modelling based on in-plane displacement fields. Int J Solids Struct 41:3439–3459. https://doi.org/10.1016/j.ijsolstr.2004.02.021

    Article  Google Scholar 

  10. Réthoré J, Muhibullah ET, Coret M, Chaudet P, Combescure A (2013) Robust identification of elasto-plastic constitutive law parameters from digital images using 3D kinematics. Int J Solids Struct 50:73–85. https://doi.org/10.1016/j.ijsolstr.2012.09.002

    Article  Google Scholar 

  11. Ruybalid AP, Hoefnagels JPM, van der Sluis O, Geers MGD (2016) Comparison of the identification performance of conventional FEM updating and integrated DIC. Int J Numer Meth Eng 106:298–320. https://doi.org/10.1002/nme.5127

    Article  MathSciNet  Google Scholar 

  12. Coppieters S, Cooreman S, Sol H, Van Houtte P, Debruyne D (2011) Identification of the post-necking hardening behaviour of sheet metal by comparison of the internal and external work in the necking zone. J Mater Process Technol 211:545–552. https://doi.org/10.1016/j.jmatprotec.2010.11.015

    Article  CAS  Google Scholar 

  13. Hartmann S, Gilbert RR (2021) Material parameter identification using finite elements with time-adaptive higher-order time integration and experimental full-field strain information. Comput Mech 68:633–650. https://doi.org/10.1007/s00466-021-01998-3

    Article  MathSciNet  Google Scholar 

  14. Denys K, Coppieters S, Cooreman S, Debruyne D (2017) Alternative method for the identification of the strain hardening behaviour along the rolling direction of coil. Strain 53:e12231. https://doi.org/10.1111/str.12231

    Article  CAS  Google Scholar 

  15. Martins JMP, Andrade-Campos A, Thuillier S (2019) Calibration of anisotropic plasticity models using a biaxial test and the virtual fields method. Int J Solids Struct 172–173:21–37. https://doi.org/10.1016/j.ijsolstr.2019.05.019

    Article  Google Scholar 

  16. Lattanzi A, Barlat F, Pierron F, Marek A, Rossi M (2020) Inverse identification strategies for the characterization of transformation-based anisotropic plasticity models with the non-linear VFM. Int J Mech Sci 173:105422. https://doi.org/10.1016/j.ijmecsci.2020.105422

    Article  Google Scholar 

  17. Marek A, Davis FM, Pierron F (2017) Sensitivity-based virtual fields for the non-linear virtual fields method. Comput Mech 60:409–431. https://doi.org/10.1007/s00466-017-1411-6

    Article  MathSciNet  PubMed  PubMed Central  Google Scholar 

  18. Meuwissen MHH, Oomens CWJ, Baaijens FPT, Petterson R, Janssen JD (1998) Determination of the elasto-plastic properties of aluminium using a mixed numerical–experimental method. J Mater Process Technol 75:204–211. https://doi.org/10.1016/S0924-0136(97)00366-X

    Article  Google Scholar 

  19. Güner A, Soyarslan C, Brosius A, Tekkaya AE (2012) Characterization of anisotropy of sheet metals employing inhomogeneous strain fields for Yld 2000–2D yield function. Int J Solids Struct 49:3517–3527. https://doi.org/10.1016/j.ijsolstr.2012.05.001

    Article  CAS  Google Scholar 

  20. Avril S, Pierron F (2007) General framework for the identification of constitutive parameters from full-field measurements in linear elasticity. Int J Solids Struct 44:4978–5002. https://doi.org/10.1016/j.ijsolstr.2006.12.018

    Article  Google Scholar 

  21. Mei Y, Deng J, Guo X, Goenezen S, Avril S (2021) Introducing regularization into the virtual fields method (VFM) to identify nonhomogeneous elastic property distributions. Comput Mech 67:1581–1599. https://doi.org/10.1007/s00466-021-02007-3

    Article  MathSciNet  Google Scholar 

  22. Grédiac M, Pierron F (2006) Applying the virtual fields method to the identification of elasto-plastic constitutive parameters. Int J Plast 22:602–627. https://doi.org/10.1016/j.ijplas.2005.04.007

    Article  CAS  Google Scholar 

  23. Pannier Y, Avril S, Rotinat R, Pierron F (2006) Identification of elasto-plastic constitutive parameters from statically undetermined tests using the virtual fields method. Exp Mech 46:735–755. https://doi.org/10.1007/s11340-006-9822-x

    Article  Google Scholar 

  24. Kim J-H, Serpantié A, Barlat F, Pierron F, Lee M-G (2013) Characterization of the post-necking strain hardening behavior using the virtual fields method. Int J Solids Struct 50:3829–3842. https://doi.org/10.1016/j.ijsolstr.2013.07.018

    Article  Google Scholar 

  25. Kim J-H, Barlat F, Pierron F, Lee M-G (2014) Determination of anisotropic plastic constitutive parameters using the virtual fields method. Exp Mech 54:1189–1204. https://doi.org/10.1007/s11340-014-9879-x

    Article  Google Scholar 

  26. Rossi M, Pierron F, Štamborská M (2016) Application of the virtual fields method to large strain anisotropic plasticity. Int J Solids Struct 97–98:322–335. https://doi.org/10.1016/j.ijsolstr.2016.07.015

    Article  CAS  Google Scholar 

  27. Grédiac M, Auslender F, Pierron F (2001) Applying the virtual fields method to determine the through-thickness moduli of thick composites with a nonlinear shear response. Compos A Appl Sci Manuf 32:1713–1725. https://doi.org/10.1016/S1359-835X(01)00029-X

    Article  Google Scholar 

  28. Rossi M, Pierron F (2012) Identification of plastic constitutive parameters at large deformations from three dimensional displacement fields. Comput Mech 49:53–71. https://doi.org/10.1007/s00466-011-0627-0

    Article  Google Scholar 

  29. Martins JMP, Andrade-Campos A, Thuillier S (2018) Comparison of inverse identification strategies for constitutive mechanical models using full-field measurements. Int J Mech Sci 145:330–345. https://doi.org/10.1016/j.ijmecsci.2018.07.013

    Article  Google Scholar 

  30. Sutton MA, Deng X, Liu J, Yang L (1996) Determination of elastic-plastic stresses and strains from measured surface strain data. Exp Mech 36:99–112. https://doi.org/10.1007/BF02328705

    Article  Google Scholar 

  31. Coppieters S, Kuwabara T (2014) Identification of post-necking hardening phenomena in ductile sheet metal. Exp Mech 54:1355–1371. https://doi.org/10.1007/s11340-014-9900-4

    Article  CAS  Google Scholar 

  32. Belytschko T, Liu WK, Moran B (2000) Nonlinear finite elements for continua and structures. Wiley, Chichester

    Google Scholar 

  33. Marek A, Davis FM, Kim J-H, Pierron F (2020) Experimental validation of the sensitivity-based virtual fields for identification of anisotropic plasticity models. Exp Mech 60:639–664. https://doi.org/10.1007/s11340-019-00575-3

    Article  CAS  Google Scholar 

  34. Marek A, Davis FM, Rossi M, Pierron F (2019) Extension of the sensitivity-based virtual fields to large deformation anisotropic plasticity. Int J Mater Form 12:457–476. https://doi.org/10.1007/s12289-018-1428-1

    Article  Google Scholar 

  35. Wigger T, Lupton C, Tong J (2018) A parametric study of DIC measurement uncertainties on cracked metals. Strain 54:e12291. https://doi.org/10.1111/str.12291

    Article  Google Scholar 

  36. Rossi M, Lava P, Pierron F, Debruyne D, Sasso M (2015) Effect of DIC spatial resolution, noise and interpolation error on identification results with the VFM. Strain 51:206–222. https://doi.org/10.1111/str.12134

    Article  Google Scholar 

  37. Zhang Y, Van Bael A, Andrade-Campos A, Coppieters S (2022) Parameter identifiability analysis: mitigating the non-uniqueness issue in the inverse identification of an anisotropic yield function. Int J Solids Struct 243:111543. https://doi.org/10.1016/j.ijsolstr.2022.111543

    Article  Google Scholar 

  38. Henriques J, Conde M, Andrade-Campos A, Xavier J (2022) Identification of swift law parameters using FEMU by a synthetic image DIC-based approach. Key Eng Mater 926:2211–2221. https://doi.org/10.4028/p-33un7m

    Article  Google Scholar 

  39. Mokhtarishirazabad M, Lopez-Crespo P, Moreno B, Lopez-Moreno A, Zanganeh M (2016) Evaluation of crack-tip fields from DIC data: a parametric study. Int J Fatigue 89:11–19. https://doi.org/10.1016/j.ijfatigue.2016.03.006

    Article  CAS  Google Scholar 

  40. Wang ZY, Li HQ, Tong JW, Ruan JT (2007) Statistical analysis of the effect of intensity pattern noise on the displacement measurement precision of digital image correlation using self-correlated images. Exp Mech 47:701–707. https://doi.org/10.1007/s11340-006-9005-9

    Article  Google Scholar 

  41. Bornert M, Brémand F, Doumalin P, Dupré J-C, Fazzini M, Grédiac M et al (2009) Assessment of digital image correlation measurement errors: methodology and results. Exp Mech 49:353–370. https://doi.org/10.1007/s11340-008-9204-7

    Article  Google Scholar 

  42. ABAQUS User’s Manual 2012.

  43. Hughes TJR, Winget J (1980) Finite rotation effects in numerical integration of rate constitutive equations arising in large-deformation analysis. Int J Numer Meth Eng 15:1862–1867. https://doi.org/10.1002/nme.1620151210

    Article  MathSciNet  Google Scholar 

  44. Hild F, Roux S (2012) Comparison of local and global approaches to digital image correlation. Exp Mech 52:1503–1519. https://doi.org/10.1007/s11340-012-9603-7

    Article  Google Scholar 

  45. Yoon J-W, Barlat F, Dick RE, Chung K, Kang TJ (2004) Plane stress yield function for aluminum alloy sheets—part II: FE formulation and its implementation. Int J Plast 20:495–522. https://doi.org/10.1016/S0749-6419(03)00099-8

    Article  CAS  Google Scholar 

  46. Rossi M, Lattanzi A, Cortese L, Amodio D (2020) An approximated computational method for fast stress reconstruction in large strain plasticity. Int J Numer Meth Eng 121:3048–3065. https://doi.org/10.1002/nme.6346

    Article  MathSciNet  Google Scholar 

  47. Brosius A, Küsters N, Lenzen M (2018) New method for stress determination based on digital image correlation data. CIRP Ann 67:269–272. https://doi.org/10.1016/j.cirp.2018.04.026

    Article  Google Scholar 

  48. Yoon S, Barlat F (2023) Non-iterative stress integration method for anisotropic materials. Int J Mech Sci 242:108003. https://doi.org/10.1016/j.ijmecsci.2022.108003

    Article  Google Scholar 

  49. Yoon S, Barlat F (2023) Non-iterative stress projection method for anisotropic hardening. Mech Mater 183:104683. https://doi.org/10.1016/j.mechmat.2023.104683

    Article  Google Scholar 

  50. Halilovič M, Vrh M, Štok B (2009) NICE—an explicit numerical scheme for efficient integration of nonlinear constitutive equations. Math Comput Simul 80:294–313. https://doi.org/10.1016/j.matcom.2009.06.030

    Article  MathSciNet  Google Scholar 

  51. Vrh M, Halilovič M, Štok B (2010) Improved explicit integration in plasticity. Int J Numer Meth Eng 81:910–938

    Article  MathSciNet  Google Scholar 

  52. Halilovič M, Vrh M, Štok B (2013) NICE h: a higher-order explicit numerical scheme for integration of constitutive models in plasticity. Eng Comput 29:55–70

    Article  Google Scholar 

  53. Halilovic M, Starman B, Vrh M, Stok B (2017) A robust explicit integration of elasto-plastic constitutive models, based on simple subincrement size estimation. Eng Computat 34:1771

    Article  Google Scholar 

  54. Sun F, Liu P, Liu W (2021) Multi-level deep drawing simulations of AA3104 aluminium alloy using crystal plasticity finite element modelling and phenomenological yield function. Adv Mech Eng 13:16878140211001204. https://doi.org/10.1177/16878140211001203

    Article  CAS  Google Scholar 

  55. Safaei M, Lee M-G, De Waele W (2015) Evaluation of stress integration algorithms for elastic–plastic constitutive models based on associated and non-associated flow rules. Comput Methods Appl Mech Eng 295:414–445. https://doi.org/10.1016/j.cma.2015.07.014

    Article  MathSciNet  ADS  Google Scholar 

  56. Lava P, Cooreman S, Coppieters S, De Strycker M, Debruyne D (2009) Assessment of measuring errors in DIC using deformation fields generated by plastic FEA. Opt Lasers Eng 47:747–753. https://doi.org/10.1016/j.optlaseng.2009.03.007

    Article  Google Scholar 

  57. Bossuyt S. (2013) Optimized Patterns for Digital Image Correlation. In: Jin H, Sciammarella C, Furlong C, Yoshida S, (ed) Imaging methods for novel materials and challenging applications. Springer: London. pp 239–48. doi https://doi.org/10.1007/978-1-4614-4235-6_34.

Download references

Acknowledgements

M. Halilovič and B. Starman would like to acknowledge the Slovenian Research Agency for its financial support of research programme P2-0263. S. Coppieters and B. Starman gratefully acknowledge the support from the Research Fund for Coal and Steel under grant agreement No 888153 (EU-RFCS 2019 project No. 888153 | vForm-xSteels). S. Coppieters acknowledges dr. P. Lava for the use of MatchID and the fruitful discussions.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualisation, MH, BS and SC; methodology, MH, BS and SC; software, BS and MH; validation, BS and MH; formal analysis, BS and MH; investigation, BS, MH and SC; resources, SC and MH; data curation, SC and BS; writing—original draft preparation, MH and BS; writing—review and editing, BS and SC; visualisation, BS; supervision, MH and SC; project administration, SC; funding acquisition, SC and MH All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Sam Coppieters.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: The stress update algorithm

Appendix A: The stress update algorithm

The algorithm is based on the NICE scheme presented in [53] for general rate-independent plasticity models defined by a set of Differential–Algebraic Equations (DAE). Classical models consist of a yield condition and a set of evolution equations that determine the change of the state variables with loading given as

$$ {\Phi } = {\Phi }\left( {{\varvec{\sigma}},\sigma_{{\text{Y}}} ,{{\varvec{\upkappa}}}} \right) = 0 $$
$$ {\text{d}}{\varvec{\sigma}} = {\varvec{C}}_{{{\text{el}}}} \user2{ }\left( {{\text{d}}{\varvec{\varepsilon}}^{{{\text{tot}}}} - {\text{d}}{\varvec{\varepsilon}}^{{\text{p}}} } \right), $$
$$ {\text{d}}{\varvec{\varepsilon}}^{{\text{p}}} = \frac{{\partial {\Phi }}}{{\partial {\varvec{\sigma}}}}{\text{d}}\lambda , $$
$$ {\text{d}}\varepsilon_{{{\text{eq}}}}^{{\text{p}}} = \frac{{\varvec{\sigma}}}{{{\upsigma }_{{\text{Y}}} }}{\text{d}}{\varvec{\varepsilon}}^{{\text{p}}} , $$
$$ {\text{d}}\sigma_{Y} = H {\text{d}}\varepsilon_{{{\text{eq}}}}^{p} , $$
$$ {\text{d}}{{\varvec{\upkappa}}} = {\text{d}}{{\varvec{\upkappa}}}\left( {{\varvec{\sigma}},\sigma_{{\text{Y}}} ,{{\varvec{\upkappa}}}} \right), $$

where \(\Phi \) is the yield function, \({\varvec{\sigma}}\) is the stress tensor, \({\sigma }_{{\text{Y}}}\) is the yield stress, \({{\varvec{C}}}_{{\text{el}}}\) is the elastic stiffness tensor, \({\varvec{\varepsilon}}\) is the total strain tensor, \({{\varvec{\varepsilon}}}^{{\text{p}}}\) is the plastic strain tensor, \({\varepsilon }_{{\text{eq}}}^{{\text{p}}}\) is equivalent plastic strain, \(\lambda \) is the plastic multiplier, \(H=\frac{{\partial \sigma }_{{\text{Y}}}}{\partial {\varepsilon }_{{\text{eq}}}^{{\text{p}}}}\) is the strain hardening modulus, and \({\varvec{\upkappa}}\) is a vector of the other state variables. If such a set of equation is transformed in incremental form in view of the NICE formulation, the above equations yield the following explicit set of equation:

$$\Phi + \frac{{\partial \Phi }}{{\partial {\sigma }}}\Delta {\sigma } + \frac{{\partial \Phi }}{{\partial \sigma _{{\text{Y}}} }}\Delta \sigma _{{\text{Y}}} + \frac{{\partial \Phi }}{{\partial {\mathbf{\kappa }}}}\Delta {\mathbf{\kappa }} = 0,$$
$$\Delta \sigma ={\varvec{C}}_{ {\text{el} }} \left( \Delta {\varepsilon }^{ {\text{tot}}} - \frac{ \partial \Phi } { \partial \sigma } \Delta \lambda \right),$$
$$\Delta \sigma_{{\text{Y}}} = H\,\frac{ \sigma } {\sigma _{{\text{Y}}} } \frac{{\partial\Phi }}{{\partial{\sigma }}}\Delta \lambda ,$$
$$\Delta {\mathbf{\kappa }} = \frac{{\partial {\mathbf{\kappa }}}}{{\partial \lambda }}\Delta \lambda .$$

To preserve the generality of the derivation, the following vector/matrix notation of the tensor variables is defined

$$\begin{aligned}&\Delta {\varvec{\upvarepsilon}}={\left\{\begin{array}{cccccc}\Delta {\varepsilon }_{11}&\Delta {\varepsilon }_{22}&\Delta {\varepsilon }_{33}&\Delta {\varepsilon }_{12}&\Delta {\varepsilon }_{23}&\Delta {\varepsilon }_{31}\end{array}\right\}}^{\mathbf{T}},\\ &{\varvec{\Sigma}}=\left\{\begin{array}{c}{\varvec{\upsigma}}\\ {\sigma }_{{\text{Y}}}\\ {\varvec{\upkappa}}\end{array}\right\}={\left\{\begin{array}{cccccccccc}{\sigma }_{11}& {\sigma }_{22}& {\sigma }_{33}& {\sigma }_{12}& {\sigma }_{23}& {\sigma }_{31}& {\sigma }_{{\text{Y}}}& {\kappa }_{1}& \dots & {\kappa }_{p}\end{array}\right\}}^{\mathbf{T}},\end{aligned}$$
$$\begin{aligned}&\mathbf{C}=\left[\begin{array}{c}{\left[{\mathbf{C}}_{{\text{el}}}\right]}_{6{\text{x}}6}\\ {\left[0\right]}_{1{\text{x}}6}\\ {\left[0\right]}_{p{\text{x}}6}\end{array}\right]=\left[\begin{array}{cccccc}{C}_{1111}& {C}_{1122}& {C}_{1133}& {C}_{1112}& {C}_{1123}& {C}_{1131}\\ {C}_{2211}& {C}_{2222}& {C}_{2233}& {C}_{2212}& {C}_{2223}& {C}_{2231}\\ {C}_{3311}& {C}_{3322}& {C}_{3333}& {C}_{3312}& {C}_{3323}& {C}_{3331}\\ {C}_{1211}& {C}_{1222}& {C}_{1233}& {C}_{1212}& {C}_{1223}& {C}_{1231}\\ {C}_{2311}& {C}_{2322}& {C}_{2333}& {C}_{2312}& {C}_{2323}& {C}_{2331}\\ {C}_{3111}& {C}_{3122}& {C}_{3133}& {C}_{3112}& {C}_{3123}& {C}_{3131}\\ 0& 0& 0& 0& 0& 0\\ 0& 0& 0& 0& 0& 0\\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0& 0& 0& 0& 0& 0\end{array}\right];\\ \boldsymbol{ }\boldsymbol{ }\boldsymbol{ }&\mathbf{R}=\left\{\begin{array}{c}{\left[{\mathbf{C}}_{{\text{el}}}\bullet \frac{\partial\Phi }{\partial {\varvec{\upsigma}}}\right]}_{6{\text{x}}1}\\ {\left[-H\frac{{\varvec{\upsigma}}}{{\sigma }_{{\text{Y}}}}\bullet \frac{\partial\Phi }{\partial {\varvec{\upsigma}}}\right]}_{1{\text{x}}1}\\ {\left[-\frac{\partial {\varvec{\upkappa}}}{\partial \lambda }\right]}_{p{\text{x}}1}\end{array}\right\}\end{aligned}$$
(A1)

where \(\Delta {\varvec{\upvarepsilon}}\) is a vector of strain increments, a vector \({\varvec{\Sigma}}\) contains stress components, the yield stress, and all other state variables, such as the components of the back-stress tensor in kinematic hardening or the porosity in the Gurson model. The vector \(\mathbf{R}\) contains all the terms that are multiplied by \(\Delta \lambda \). For multiplications between the stacked matrix and the vector quantities, the rules of the special matrix operator apply here (see [53] for more on notation).

Let us briefly recall the basic idea of the NICE scheme and its formulation from [53]. A consistency (yield) condition \(\Phi =0\) is the algebraic equation expanded in Taylor series to approximate \(\Phi \) at the end of the increment, while all differential equations are converted to difference form, as is known from explicit methods. This effectively suppresses the permanent drift that typically occurs in explicit methods. The model equations can be written in a generalized stacked matrix form as

$$ \Phi + \frac{\partial \Phi }{{\partial {{\varvec{\Sigma}}}}} \cdot \Delta {{\varvec{\Sigma}}} = 0,{ }\;\Delta {{\varvec{\Sigma}}} = {\mathbf{C}}\Delta {{\varvec{\upvarepsilon}}} - {\mathbf{R}} \Delta \lambda $$
(A2)

from where the plastic multiplier \(\mathrm{\Delta \lambda }\) can be explicitly extracted

$$ \Delta \lambda = \frac{{\Phi + \frac{\partial \Phi }{{\partial {{\varvec{\Sigma}}}}} \cdot {\mathbf{C}} \cdot \Delta {{\varvec{\upvarepsilon}}}}}{{\frac{\partial \Phi }{{\partial {{\varvec{\Sigma}}}}} \cdot {\mathbf{R}}}} $$
(A3)

Considering also the Kuhn-Tucker conditions for the elastic–plastic transition, part of the increment \(\beta\Delta {\varvec{\upvarepsilon}}\) requires an elastic update, and \((1-\beta )\Delta {\varvec{\upvarepsilon}}\) remains for the plastic update described above. The coefficient \(\beta \) is estimated from actual and trial values of the yield function \(\Phi \) and \({\Phi }^{{\text{tr}}}\), respectively

$$ \beta = \frac{{0 - {\Phi }}}{{{\Phi }^{{{\text{tr}}}} - {\Phi }}}. $$
(A4)

The scheme NICE is a conditionally stable scheme, and in [53] it was shown that in each subincrement the size of the next stable subincrement can be computed, so that the integration can continue with the maximum possible stable increment. It was also shown that an Algorithmic Tangent Stiffness (ATS) can be updated in each subincrement, but in a stress reconstruction from a measured strain field, this term is not needed. Briefly, the remainder of the strain increment \((1-\beta )\Delta {\varvec{\upvarepsilon}}\) is further subdivided into smaller subincrements, where the size of the current increment is \(\left(1-\beta \right) \alpha\Delta {\varvec{\upvarepsilon}}\) with the ratio \(\alpha \) being

$$ \alpha = \frac{{\frac{2}{{{\text{max}}\left( { - {{\varvec{\upomega}}}} \right)}}\frac{\partial \Phi }{{\partial {{\varvec{\Sigma}}}}} \cdot {\mathbf{R}} - \Phi }}{{\left( {1 - \beta } \right)\frac{\partial \Phi }{{\partial {{\varvec{\Sigma}}}}} \cdot {\mathbf{C}} \cdot \Delta {{\varvec{\upvarepsilon}}}}}; {{\varvec{\upomega}}} = {\text{eig}}\left( { - \frac{{\partial {\mathbf{R}}}}{{\partial {{\varvec{\Sigma}}}}}} \right). $$
(A5)

Thus, the elastic updating is \(\Delta {{\varvec{\Sigma}}} = {\mathbf{C}} \cdot \Delta {{\varvec{\upvarepsilon}}}\), while the plastic updating of each subincrement follows the equation

$$ \begin{aligned}&\Delta {{\varvec{\Sigma}}} = {\mathbf{C}} \cdot \left( {1 - \beta } \right) \alpha \Delta {{\varvec{\upvarepsilon}}} - {\mathbf{R}} \Delta \lambda ;\\ &{ }\Delta \lambda = \frac{{\Phi + \frac{\partial \Phi }{{\partial {{\varvec{\Sigma}}}}} \cdot {\mathbf{C}} \cdot \left( {1 - \beta } \right) \alpha \;\Delta {{\varvec{\upvarepsilon}}}}}{{\frac{\partial \Phi }{{\partial {{\varvec{\Sigma}}}}} \cdot {\mathbf{R}}}}.\end{aligned} $$
(A6)

This was a brief summary of the method, which serves as a theoretical background; a precise notation of the formulation, its robustness, accuracy, and efficiency is described in detail in [53]. Let us now extend the explanation to make it suitable for stress reconstruction from measured strain fields. The DIC measurements capture the surface strains, so the equations need to be reformulated for the plane stress state \({\upsigma }_{33}=0\). For this purpose, the variables in Eq. (A1) are redefined in the following reduced form

$$ \begin{gathered} \Delta {{\varvec{\upvarepsilon}}}_{{{\text{PS}}}} = \left\{ {\begin{array}{*{20}c} {\Delta \varepsilon_{11} } & {\Delta \varepsilon_{22} } & {\Delta \varepsilon_{12} } \\ \end{array} } \right\}^{{\mathbf{T}}} ,{{\varvec{\Sigma}}}_{{{\text{PS}}}} = \left\{ {\begin{array}{*{20}c} {\sigma_{11} } & {\sigma_{22} } & {\sigma_{12} } & {\sigma_{{\text{Y}}} } \\ \end{array} } \right\}^{{\mathbf{T}}} , \hfill \\ {\mathbf{C}}_{{{\text{red}}}} = \left[ {\begin{array}{*{20}c} {\left[ {{\mathbf{C}}_{{{\text{el}}}} } \right]_{{3{\text{x}}3}} } \\ {\left[ 0 \right]_{{1{\text{x}}3}} } \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} {C_{1111} } & {C_{1122} } & {C_{1112} } \\ {C_{2211} } & {C_{2222} } & {C_{2212} } \\ {C_{1211} } & {C_{1222} } & {C_{1212} } \\ 0 & 0 & 0 \\ \end{array} } \right];\user2{ }\hfill \\ {\mathbf{R}}_{{{\text{red}}}} = \left\{ {\begin{array}{*{20}c} {\left[ {{\mathbf{C}}_{{{\text{el}}}} \cdot \frac{\partial \Phi }{{\partial {{\varvec{\upsigma}}}}}} \right]_{{3{\text{x}}1}} } \\ {\left[ { - H\frac{{{\varvec{\upsigma}}}}{{\sigma_{{\text{Y}}} }} \cdot \frac{\partial \Phi }{{\partial {{\varvec{\upsigma}}}}}} \right]_{{1{\text{x}}1}} } \\ \end{array} } \right\} \hfill \\ \end{gathered} $$
(A7)
$$ {\mathbf{C}}_{{3{\text{Col}}}} = \left\{ {\begin{array}{*{20}c} {C_{1133} } & {C_{2233} } & {C_{1233} } & 0 \\ \end{array} } \right\}^{{\mathbf{T}}} , $$
$$ {\mathbf{C}}_{{3{\text{Row}}}} = \left\{ {\begin{array}{*{20}c} {C_{3311} } & {C_{3322} } & {C_{3312} } \\ \end{array} } \right\}, $$

where, for simplicity, we assume that the model does not contain a variable \({\varvec{\upkappa}}\), and subscrips “PS” and “red” stand for “plane stress” and “reduced”, respectively. However, we define here two additional vectors \({\mathbf{C}}_{3{\text{Col}}}\) and \({\mathbf{C}}_{3{\text{Row}}}\), which represent the omitted third column and third row of the original matrix C, respectively. Equation (A2) can now be rewritten as follows

$$ \Phi + \frac{\partial \Phi }{{\partial {{\varvec{\Sigma}}}_{{{\text{PS}}}} }} \cdot \Delta {{\varvec{\Sigma}}}_{{{\text{PS}}}} = 0,\Delta {{\varvec{\Sigma}}}_{{{\text{PS}}}} = {\mathbf{C}}_{{{\text{red}}}} \cdot \Delta {{\varvec{\upvarepsilon}}}_{{{\text{PS}}}} + {\mathbf{C}}_{{3{\text{Col}}}} { }\Delta \varepsilon_{33} - {\mathbf{R}}_{{{\text{red}}}} \Delta \lambda $$
(A8)

to which the zero-normal-stress condition is added

$$ \Delta \sigma_{33} = {\mathbf{C}}_{{3{\text{Row}}}} \cdot \Delta {{\varvec{\upvarepsilon}}}_{{{\text{PS}}}} + C_{3333} \Delta \varepsilon_{33} - R_{3} \Delta \lambda = 0, $$
(A9)

where \({R}_{3}\) is the third term of the original vector \(\mathbf{R}\). The term \(\Delta {\varepsilon }_{33}\) can now be extracted from Eq. (A9) and, after substitution into Eq. (A8), yields

$$ \Delta {{\varvec{\Sigma}}}_{{{\text{PS}}}} = \left( {{\mathbf{C}}_{{{\text{red}}}} - \frac{{{\mathbf{C}}_{{3{\text{Col}}}} { } \otimes {\mathbf{C}}_{{3{\text{Row}}}} { }}}{{C_{3333} }}} \right) \cdot \Delta {{\varvec{\upvarepsilon}}}_{{{\text{PS}}}} - \left( {{\mathbf{R}}_{{{\text{red}}}} - \frac{{{\mathbf{C}}_{{3{\text{Col}}}} { }R_{3} { }}}{{C_{3333} }}} \right) \Delta \lambda , $$
(A10)

or in a condensed form

$$ \Delta {{\varvec{\Sigma}}}_{{{\text{PS}}}} = {\mathbf{C}}_{{{\text{PS}}}} \cdot \Delta {{\varvec{\upvarepsilon}}}_{{{\text{PS}}}} - {\mathbf{R}}_{{{\text{PS}}}} \Delta \lambda $$
(A11)

The form of the equation is mathematically identical to Eq. (A2), so the same derivation used for Eq. (A6) leads to the plastic update for the plane stress state

$$ \begin{aligned} &\Delta {{\varvec{\Sigma}}}_{{{\text{PS}}}} = {\mathbf{C}}_{{{\text{PS}}}} \cdot \left( {1 - \beta } \right) \alpha \Delta {{\varvec{\upvarepsilon}}}_{{{\text{PS}}}} - {\mathbf{R}}_{{{\text{PS}}}} \Delta \lambda ;{ }\\ &\Delta \lambda = \frac{{\Phi + \frac{\partial \Phi }{{\partial {{\varvec{\Sigma}}}_{{{\text{PS}}}} }} \cdot {\mathbf{C}}_{{{\text{PS}}}} \cdot \left( {1 - \beta } \right) \alpha \Delta {{\varvec{\upvarepsilon}}}_{{{\text{PS}}}} }}{{\frac{\partial \Phi }{{\partial {{\varvec{\Sigma}}}_{{{\text{PS}}}} }} \cdot {\mathbf{R}}_{{{\text{PS}}}} }}.\end{aligned} $$
(A12)

Without compromising the generality of the approach, we will now present a simplification of the equations for a particular model. For clarity of presentation of the principle, we have chosen the von Mises plasticity model with hardening combined with isotropic linear elasticity. In the calculation, the following definitions of the non-zero terms are

$$ \begin{aligned} &\Phi = \sigma_{eq} - \sigma_{Y}; \sigma_{eq} = \sqrt {\frac{3}{2}{\mathbf{s}} \cdot {\mathbf{s}}},\\ &C_{1111} = C_{2222} = C_{3333} = \frac{{E\left( {1 - \nu } \right)}}{{\left( {1 + \nu } \right)\left( {1 - 2\nu } \right)}}, \\ &C_{1122} = C_{1133} = C_{2233} = C_{2211} = C_{3311} = C_{3322} = \frac{E \nu }{{\left( {1 + \nu } \right)\left( {1 - 2\nu } \right)}},\\ &C_{1212} = \mu = \frac{E}{{2\left( {1 + \nu } \right)}}, \end{aligned} $$
(A13)

where \(\mathbf{s}\) is a deviatoric stress. The term \({\mathbf{C}}_{{\text{PS}}}\) in Eq. (A11) simplifies to the extended well-known stiffness matrix for plane stress state

$$ {\mathbf{C}}_{{{\text{PS}}}} = \user2{ }{\mathbf{C}}_{{{\text{red}}}} - \frac{{{\mathbf{C}}_{{3{\text{Col}}}} { } \otimes {\mathbf{C}}_{{3{\text{Row}}}} { }}}{{C_{3333} }} = \left[ {\begin{array}{*{20}c} {C_{{{\text{dia}}}} } & {C_{{{\text{offdia}}}} } & 0 \\ {C_{{{\text{offdia}}}} } & {C_{{{\text{dia}}}} } & 0 \\ 0 & 0 & \mu \\ 0 & 0 & 0 \\ \end{array} } \right] = \frac{E}{{1 - \nu^{2} }}\left[ {\begin{array}{*{20}c} 1 & \nu & 0 \\ \nu & 1 & 0 \\ 0 & 0 & {\frac{1 - \nu }{2}} \\ 0 & 0 & 0 \\ \end{array} } \right] $$
(A13a)

and the term \({\mathbf{R}}_{{{\text{PS}}}}\) is simplified into

$$ {\mathbf{R}}_{{{\text{PS}}}} = {\mathbf{R}}_{{{\text{red}}}} - \frac{{{\mathbf{C}}_{{3{\text{Col}}}} { }R_{3} { }}}{{C_{3333} }} = \left\{ {\begin{array}{*{20}c} {\frac{3\mu }{{{\upsigma }_{{{\text{eq}}}} }}\left( {s_{11} - s_{33} \frac{\nu }{1 - \nu }} \right)} \\ {\frac{3\mu }{{{\upsigma }_{{{\text{eq}}}} }}\left( {s_{22} - s_{33} \frac{\nu }{1 - \nu }} \right)} \\ {\frac{3\mu }{{{\upsigma }_{{{\text{eq}}}} }}s_{12} } \\ { - H} \\ \end{array} } \right\}. $$
(A13b)

Using Eqs. (A13a) and (A13b), we can further simplify some expressions in Eq. (A12) and define two scalar variables \({V}_{1}\) and \({V}_{2}\)

$$ \begin{gathered} V_{1} = \frac{{\partial {\Phi }}}{{\partial {{\varvec{\Sigma}}}_{{{\text{PS}}}} }} \cdot {\mathbf{C}}_{{{\text{PS}}}} \cdot \hfill \\ \Delta {{\varvec{\upvarepsilon}}}_{{{\text{PS}}}} = \frac{3}{{2 {\upsigma }_{eq} }}\left( s_{11} \left( {C_{{{\text{dia}}}} \Delta \varepsilon_{11} \hfill + C_{{{\text{offdia}}}} \Delta \varepsilon_{22} } \right)\right.\\ \left.+ s_{22} \left( {C_{{{\text{offdia}}}} \Delta \varepsilon_{11} + C_{{{\text{dia}}}} \Delta \varepsilon_{22} } \right) + 2s_{12} \mu \Delta \varepsilon_{12} \right), \hfill \\ V_{2} = \frac{{\partial {\Phi }}}{{\partial {{\varvec{\Sigma}}}_{{{\text{PS}}}} }} \cdot {\mathbf{R}}_{{{\text{PS}}}} = 3\mu + H - \frac{{9 \mu s_{33}^{2} \left( {1 - 2\nu } \right)}}{{2 {\upsigma }_{eq}^{2} \left( {1 - \nu } \right)}}. \hfill \\ \end{gathered}$$
(A14)

Consequently, the expression for \(\mathrm{\Delta \lambda }\) in Eq. (A12) can be simplified to

$$ \Delta \lambda = \frac{{\Phi + \left( {1 - \beta } \right) \alpha V_{1} }}{{V_{2} }}. $$
(A15)

While the elastic–plastic transition coefficient \(\beta \) is defined by Eq. (A4), the expression (A5) can be simplified to

$$\alpha =\frac{\frac{{\sigma }_{{\text{Y}}}}{27\mu }{ V}_{2}-\Phi }{(1-\beta ) {V}_{1}}.$$
(A16)

To speed up the calculation, the stable increment size is calculated once per increment (and not in each subincrement), which means that the plastic integration is performed in each increment in \({N}_{{\text{sub}}}={\text{floor}}\left(1/\alpha +1\right)\) equidistant subincrements.

$${N}_{{\text{sub}}}={\text{floor}}\left(\frac{(1-\beta ) {V}_{1}}{\frac{{\sigma }_{{\text{Y}}}}{27\mu }{ V}_{2}-\Phi }+1\right)$$
(A17)

Thus, the final expression for the stress update is based on Eq. (A12)

$$ \Delta \sigma_{11} = \left( {C_{{{\text{dia}}}} \Delta \varepsilon_{11} + C_{{{\text{offdia}}}} \Delta \varepsilon_{22} } \right)\frac{{\left( {1 - \beta } \right)}}{{N_{{{\text{sub}}}} }} - \frac{3\mu }{{{\upsigma }_{eq} }}\left( {s_{11} - s_{33} \frac{\nu }{1 - \nu }} \right)\Delta \lambda ;{ } \Delta \lambda = \frac{{\Phi + \frac{{\left( {1 - \beta } \right)}}{{N_{{{\text{sub}}}} }} V_{1} }}{{V_{2} }} $$
(A18)
$$\begin{gathered} {\Delta }\sigma_{22} = \left({C_{{{\text{offdia}}}} {\Delta }\varepsilon_{11} +C_{{{\text{dia}}}} \Delta \varepsilon_{22} } \right)\hfill\\ \frac{{\left( {1 - \beta } \right)}}{{N_{{{\text{sub}}}} }} -\frac{3\mu }{{{\upsigma }_{eq} }}\left( {s_{22} - s_{33} \frac{\nu}{1 - \nu }} \right)\Delta \lambda ,{ } \hfill \\ {\Delta}\sigma_{12} = \mu { }\Delta \varepsilon_{12} \frac{{\left( {1 -\beta } \right)}}{{N_{{{\text{sub}}}} }} - \frac{3\mu }{{{\upsigma}_{eq} }}s_{12} { }\Delta \lambda ,{ }\Delta \sigma_{{\text{Y}}} =H\Delta \lambda \hfill \\ \end{gathered}$$

The update algorithm is computationally inexpensive and very easy to use. The current increment is divided into an elastic subincrement and a plastic remainder. After the elastic subincrement is performed, all variables are updated to shift the state to the yield surface. Then, the plastic remainder is divided into stable, equidistant plastic subincrements, with the stress subincrements explicitly derived so that the state can be updated after each subincrement.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Halilovič, M., Starman, B. & Coppieters, S. Computationally efficient stress reconstruction from full-field strain measurements. Comput Mech (2024). https://doi.org/10.1007/s00466-024-02458-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00466-024-02458-4

Keywords

Navigation