Skip to main content
Log in

A Universal Accelerated Primal–Dual Method for Convex Optimization Problems

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

This work presents a universal accelerated primal–dual method for affinely constrained convex optimization problems. It can handle both Lipschitz and Hölder gradients but does not need to know the smoothness level of the objective function. In line search part, it uses dynamically decreasing parameters and produces approximate Lipschitz constant with moderate magnitude. In addition, based on a suitable discrete Lyapunov function and tight decay estimates of some differential/difference inequalities, a universal optimal mixed-type convergence rate is established. Some numerical tests are provided to confirm the efficiency of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Algorithm 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bauschke, H., Combettes, P.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. CMS Books in Mathematics. Springer Science+Business Media, New York (2011)

    Google Scholar 

  2. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009)

    MathSciNet  Google Scholar 

  3. Blanchard, P., Higham, D.J., Higham, N.J.: Accurately computing the log-sum-exp and softmax functions. IMA J. Numer. Anal. 41(4), 2311–2330 (2021)

    MathSciNet  Google Scholar 

  4. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2010)

    Google Scholar 

  5. Cai, J.-F., Osher, S., Shen, Z.: Linearized Bregman iterations for compressed sensing. Math. Comput. 78(267), 1515–1536 (2009)

    MathSciNet  Google Scholar 

  6. Candès, E., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006)

    MathSciNet  Google Scholar 

  7. Chambolle, A., Pock, T.: A first-order primal–dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40(1), 120–145 (2011)

    MathSciNet  Google Scholar 

  8. Chambolle, A., Pock, T.: An introduction to continuous optimization for imaging. Acta Numer. 25, 161–319 (2016)

    MathSciNet  Google Scholar 

  9. Chen, G., Teboulle, M.: Convergence analysis of a proximal-like minimization algorithm using Bregman functions. SIAM J. Optim. 3(3), 538–543 (1993)

    MathSciNet  Google Scholar 

  10. Chen, L., Luo, H.: First order optimization methods based on Hessian-driven Nesterov accelerated gradient flow. arXiv:1912.09276 (2019)

  11. Chen, L., Luo, H.: A unified convergence analysis of first order convex optimization methods via strong Lyapunov functions. arXiv: 2108.00132 (2021)

  12. Chen, Y., Lan, G., Ouyang, Y.: Optimal primal–dual methods for a class of saddle point problems. SIAM J. Optim. 24(4), 1779–1814 (2014)

    MathSciNet  Google Scholar 

  13. Davis, D., Yin, W.: Convergence rate analysis of several splitting schemes. Splitting Methods in Communication, Imaging, Science, and Engineering, pages 115–163 (2016)

  14. Demengel, F., Demengel, G., Erné, R.: Functional Spaces for the Theory of Elliptic Partial Differential Equations. Universitext. Springer, London (2012)

    Google Scholar 

  15. Devolder, O., Glineur, F., Nesterov, Y.: First-order methods of smooth convex optimization with inexact oracle. Math. Program. 146(1–2), 37–75 (2014)

    MathSciNet  Google Scholar 

  16. Dvurechensky, P, Gasnikov, A., Kroshnin, A.: Computational optimal transport: complexity by accelerated gradient descent is better than by Sinkhorn’s algorithm. In: Proceedings of the 35 th International Conference on Machine Learning, volume 80, Stockholm, Sweden (2018). PMLR

  17. Dvurechensky, P., Staudigl, M., Shtern, S.: First-order methods for convex optimization. arXiv:2101.00935 (2021)

  18. Eckstein, J.: Splitting Methods for Monotone Operators with Applications to Parallel Optimization. PhD Thesis, Massachusetts Institute of Technology (1989)

  19. Eckstein, J., Bertsekas, D.P.: On the Douglas–Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Program. 55(1), 293–318 (1992)

    MathSciNet  Google Scholar 

  20. Esser, E., Zhang, X., Chan, T.F.: A general framework for a class of first order primal-dual algorithms for convex optimization in imaging science. SIAM J. Imaging Sci. 3(4), 1015–1046 (2010)

    MathSciNet  Google Scholar 

  21. Feijer, D., Paganini, F.: Stability of primal–dual gradient dynamics and applications to network optimization. Automatica 46(12), 1974–1981 (2010)

    MathSciNet  Google Scholar 

  22. Goldstein, T., O’Donoghue, B., Setzer, S., Baraniuk, R.: Fast alternating direction optimization methods. SIAM J. Imaging Sci. 7(3), 1588–1623 (2014)

    MathSciNet  Google Scholar 

  23. Guminov, S., Gasnikov, A., Anikin, A., Gornov, A.: A universal modification of the linear coupling method. Optim. Methods Softw. 34(3), 560–577 (2019)

    MathSciNet  Google Scholar 

  24. Guminov, S.V., Nesterov, Y.E., Dvurechensky, P.E., Gasnikov, A.V.: Primal–dual accelerated gradient descent with line search for convex and nonconvex optimization problems. arXiv:1809.05895 (2018)

  25. He, B., You, Y., Yuan, X.: On the convergence of primal-dual hybrid gradient algorithm. SIAM J. Imaging Sci. 7(4), 2526–2537 (2014)

    MathSciNet  Google Scholar 

  26. He, B., Yuan, X.: On the acceleration of augmented Lagrangian method for linearly constrained optimization. https://optimization-online.org/2010/10/2760/ (2010)

  27. He, X., Hu, R., Fang, Y.-P.: Fast primal–dual algorithm via dynamical system for a linearly constrained convex optimization problem. Automatica 146, 110547 (2022)

    MathSciNet  Google Scholar 

  28. He, X., Hu, R., Fang, Y.-P.: Inertial accelerated primal–dual methods for linear equality constrained convex optimization problems. Numer. Algorithms 90(4), 1669–1690 (2022)

    MathSciNet  Google Scholar 

  29. Huang, B., Ma, S., Goldfarb, D.: Accelerated linearized Bregman method. J. Sci. Comput. 54, 428–453 (2013)

    MathSciNet  Google Scholar 

  30. Heinonen, J.: Lectures on Lipschitz analysis. Technical Report vol. 100, Rep. Univ. Jyväskylä Dept. Math. Stat., University of Jyväskylä (2005)

  31. Jiang, F., Cai, X., Wu, Z., Han, D.: Approximate first-order primal-dual algorithms for saddle point problems. Math. Comput. 90(329), 1227–1262 (2021)

    MathSciNet  Google Scholar 

  32. Kamzolov, D., Dvurechensky, P., Gasnikov, A.: Universal intermediate gradient method for convex problems with inexact oracle. arXiv:1712.06036 (2019)

  33. Kang, M., Kang, M., Jung, M.: Inexact accelerated augmented Lagrangian methods. Comput. Optim. Appl. 62(2), 373–404 (2015)

    MathSciNet  Google Scholar 

  34. Krichene, W., Bayen, A., Bartlett, P.: Accelerated mirror descent in continuous and discrete time. Adv. Neural Inf. Process. Syst. (NIPS) 28, 2845–2853 (2015)

    Google Scholar 

  35. Li, H., Fang, C., Lin, Z.: Convergence rates analysis of the quadratic penalty method and its applications to decentralized distributed optimization. arXiv:1711.10802 (2017)

  36. Li, H., Lin, Z.: Accelerated alternating direction method of multipliers: an optimal \({O}(1/{K})\) nonergodic analysis. J. Sci. Comput. 79(2), 671–699 (2019)

    MathSciNet  Google Scholar 

  37. Lin, T., Ho, N., Jordan, M.I.: On efficient optimal transport: An analysis of greedy and accelerated mirror descent algorithms. In International Conference on Machine Learning, pp. 3982–3991. PMLR (2019)

  38. Luo, H.: Accelerated differential inclusion for convex optimization. Optimization (2021). https://doi.org/10.1080/02331934.2021.2002327

    Article  Google Scholar 

  39. Luo, H.: Accelerated primal-dual methods for linearly constrained convex optimization problems. arXiv:2109.12604 (2021)

  40. Luo, H., Zhang, Z.-H.: A unified differential equation solver approach for separable convex optimization: splitting, acceleration and nonergodic rate. arXiv:2109.13467 (2023)

  41. Luo, H.: A primal–dual flow for affine constrained convex optimization. ESAIM: Control Optim. Calc. Var. 28, 33 (2022)

  42. Luo, H., Chen, L.: From differential equation solvers to accelerated first-order methods for convex optimization. Math. Program. (2021). https://doi.org/10.1007/s10107-021-01713-3

    Article  Google Scholar 

  43. Nbmirovskii, A.S., Nrsterov, Y.E.: Optimal methods of smooth convex minimization. USSR Comput. Math. Math. Phys. 25(2), 21–30 (1985)

    MathSciNet  Google Scholar 

  44. Nemirovsky, A., Yudin, D.: Problem Complexity and Method Efficiency in Optimization. John Wiley & Sons, New York (1983)

    Google Scholar 

  45. Nesterov, Y.: Introductory Lectures on Convex Optimization. Applied Optimization, vol. 87. Springer, US, Boston, MA (2004)

  46. Nesterov, Y.: Smooth minimization of non-smooth functions. Math. Program. 103(1), 127–152 (2005)

    MathSciNet  Google Scholar 

  47. Nesterov, Y.: Gradient methods for minimizing composite functions. Math. Program. Ser. B 140(1), 125–161 (2013)

    MathSciNet  Google Scholar 

  48. Nesterov, Y.: Universal gradient methods for convex optimization problems. Math. Program. 152, 381–404 (2015)

    MathSciNet  Google Scholar 

  49. Nesterov, Y.: Lectures on Convex Optimization. Springer Optimization and Its Applications, vol. 137. Springer International Publishing, Cham (2018)

  50. Ouyang, Y., Chen, Y., Lan, G., Pasiliao, E.: An accelerated linearized alternating direction method of multipliers. SIAM J. Imaging Sci. 8(1), 644–681 (2015)

    MathSciNet  Google Scholar 

  51. Ouyang, Y., Xu, Y.: Lower complexity bounds of first-order methods for convex–concave bilinear Saddle-point problems. Math. Program. 185(1–2), 1–35 (2021)

    MathSciNet  Google Scholar 

  52. Roulet, V., d’Aspremont, A.: Sharpness, restart, and acceleration. In: 31st Conference on Neural Information Processing Systems, Long Beach, CA, USA (2017)

  53. Sabach, S., Teboulle, M.: Faster Lagrangian-based methods in convex optimization. SIAM J. Optim. 32(1), 204–227 (2022)

    MathSciNet  Google Scholar 

  54. Stonyakin, F., Dvinskikh, D., Dvurechensky, P., Kroshnin, A., Kuznetsova, O., Agafonov, A., Gasnikov, A., Tyurin, A., Uribe, C.A., Pasechnyuk, D., Artamonov, S.: Gradient methods for problems with inexact model of the objective. arXiv:1902.09001 (2019)

  55. Stonyakin, F., Gasnikov, A., Dvurechensky, P., Alkousa, M., Titov, A.: Generalized mirror prox for monotone variational inequalities: Universality and inexact oracle. arXiv:1806.05140 (2022)

  56. Tao, M., Yuan, X.: Accelerated Uzawa methods for convex optimization. Math. Comput. 86(306), 1821–1845 (2016)

    MathSciNet  Google Scholar 

  57. Tian, W., Yuan, X.: An alternating direction method of multipliers with a worst-case \({O}(1/n^2)\) convergence rate. Math. Comput. 88(318), 1685–1713 (2018)

    Google Scholar 

  58. Tran-Dinh, Q.: A unified convergence rate analysis of the accelerated smoothed gap reduction algorithm. Optim. Lett. (2021). https://doi.org/10.1007/s11590-021-01775-4

    Article  Google Scholar 

  59. Tran-Dinh, Q., Fercoq, O., Cevher, V.: A smooth primal-dual optimization framework for nonsmooth composite convex minimization. SIAM J. Optim. 28(1), 96–134 (2018)

    MathSciNet  Google Scholar 

  60. Tran-Dinh, Q., Zhu, Y.: Augmented Lagrangian-based decomposition methods with non-ergodic optimal rates. arXiv:1806.05280 (2018)

  61. Tran-Dinh, Q., Zhu, Y.: Non-stationary first-order primal–dual algorithms with faster convergence rates. SIAM J. Optim. 30(4), 2866–2896 (2020)

    MathSciNet  Google Scholar 

  62. Valkonen, T.: Inertial, corrected, primal–dual proximal splitting. SIAM J. Optim. 30(2), 1391–1420 (2020)

    MathSciNet  Google Scholar 

  63. Wibisono, A., Wilson, A.C., Jordan, M.I.: A variational perspective on accelerated methods in optimization. Proc. Natl. Acad. Sci. 113(47), E7351–E7358 (2016)

    MathSciNet  Google Scholar 

  64. Wilson, A., Recht, B., Jordan, M.: A Lyapunov analysis of momentum methods in optimization. arXiv:1611.02635 (2016)

  65. Xu, Y.: Accelerated first-order primal-dual proximal methods for linearly constrained composite convex programming. SIAM J. Optim. 27(3), 1459–1484 (2017)

    MathSciNet  Google Scholar 

  66. Xu, Y.: Iteration complexity of inexact augmented Lagrangian methods for constrained convex programming. Math. Program. 185(1–2), 199–244 (2021)

    MathSciNet  Google Scholar 

  67. Yin, W., Osher, S., Goldfarb, D., Darbon, J.: Bregman iterative algorithms for \(\ell _1\)-minimization with applications to compressed sensing. SIAM J. Imaging Sci. 1(1), 143–168 (2008)

    MathSciNet  Google Scholar 

  68. Yurtsever, A., Tran-Dinh, Q., Cevher, V.: A universal primal-dual convex optimization framework. arXiv: 1502.03123 (2015)

  69. Zhao, Y., Liao, X., He, X., Li, C.: Accelerated primal-dual mirror dynamical approaches for constrained convex optimization. arXiv:2205.15983 (2022)

Download references

Acknowledgements

The author would like to thank the Editor and two anonymous referees, for their careful readings and valuable comments that improve significantly the early version of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Luo.

Additional information

Communicated by Olivier Fercoq.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by the Foundation of Chongqing Normal University (Grant No. 202210000161) and the Science and Technology Research Program of Chongqing Municipal Education Commission (Grant No. KJZD-K202300505)

Appendices

Proof of Lemma 3.1

Let us first prove (18). Recall that \(i_k\) is the smallest nonnegative integer such that (cf. (15))

$$\begin{aligned} h(x_{k,i_k})-\varDelta _{k,i_k}\le \frac{\delta _{k,i_{k}}}{2}. \end{aligned}$$

If \(i_k = 0\), then \(M_{k+1} = M_{k,0} /\rho _{_{\!d}}= M_{k}/\rho _{_{\!d}}\). Otherwise (i.e., \(i_k\ge 1\)), we claim that

$$\begin{aligned} M_{k,i_k}\le \rho _{\!u}\cdot M(\nu ,\delta _{k,i_{k}-1}). \end{aligned}$$
(57)

If this is violated, then \(M_{k,i_{k}-1} = M_{k,i_k}/\rho _{\!u}>M(\nu ,\delta _{k,i_{k}-1})\). According to Proposition 2.1, this implies immediately that

$$\begin{aligned} h(x_{k,i_{k}-1})-\varDelta _{k,i_{k}-1}\le \frac{\delta _{k,i_{k}-1}}{2}, \end{aligned}$$

which yields a contradiction and thus verifies (57). Additionally, by (16), we have \( \alpha _{k,i_{k}-1}\le \sqrt{\rho _{\! u}}\alpha _{k,i_{k}}\). Therefore, collecting (13,17,57) leads to

$$\begin{aligned} M_{k+1} = M_{k,i_k}/\rho _{_{\!d}}\le \frac{\sqrt{\rho _{\! u}} \rho _{\! u}}{\rho _{_{\!d}}}\cdot M(\nu ,\delta _{k,i_{k}}) =\frac{\sqrt{\rho _{\! u}} \rho _{\! u}}{\rho _{_{\!d}}}\cdot M(\nu ,\delta _{k+1}). \end{aligned}$$
(58)

This means that for all \(k\in {\mathbb {N}}\), we have

$$\begin{aligned} M_{k+1}\le \frac{1}{\rho _{_{\!d}}} \max \left\{ M_{k},\,\sqrt{\rho _{\! u}} \rho _{\! u}\cdot M(\nu ,\delta _{k+1})\right\} . \end{aligned}$$
(59)

Since \(\delta _{k+1} = \beta _{k+1}/{(k+1)}\) with \(\{\beta _k\}_{k\in {\mathbb {N}}}\) being decreasing (cf.(17)), it follows that \(\delta _{k+1}\le \delta _{\ell +1}\) and \(M(\nu ,\delta _{\ell +1})\le M(\nu ,\delta _{k+1})\) for all \(0\le \ell \le k\), which together with (59) indicates the estimate

$$\begin{aligned} \begin{aligned} M_{k+1}\le {}&\frac{1}{\rho _{_{\!d}}} \max \left\{ \frac{1}{\rho _{_{\!d}}}\max \left\{ M_{k-1},\,\sqrt{\rho _{\! u}} \rho _{\! u}\cdot M(\nu ,\delta _{k})\right\} ,\,\sqrt{\rho _{\! u}} \rho _{\! u}\cdot M(\nu ,\delta _{k+1})\right\} \\ \le {}&\frac{1}{\rho _{_{\!d}}}\max \left\{ \frac{M_{k-1}}{\rho _{_{\!d}}},\,\sqrt{\rho _{\! u}} \rho _{\! u}\cdot M(\nu ,\delta _{k+1})\right\} \\ \le {}&\cdots \le \frac{1}{\rho _{_{\!d}}}\max \left\{ \frac{M_{0}}{\rho _{_{\!d}}^{k}},\,\sqrt{\rho _{\! u}} \rho _{\! u}\cdot M(\nu ,\delta _{k+1})\right\} . \end{aligned} \end{aligned}$$

This proves the desired result (18).

Then, let us verify (19). Observing that \(M_{k+1} = M_{k,i_k} /\rho _{_{\!d}}= \rho _{\! u}^{i_k}M_{k}/\rho _{_{\!d}}\), we have

$$\begin{aligned} i_k = \log _{\rho _{\!u}}\frac{\rho _{_{\!d}}M_{k+1}}{M_{k}} \quad \Longrightarrow \quad \sum _{j=0}^{k}i_j= \log _{\rho _{\! u}}\frac{\rho _{_{\!d}}^{k+1}M_{k+1}}{M_{0}}. \end{aligned}$$

Invoking the estimate of \(M_{k+1}\) gives

$$\begin{aligned} \begin{aligned} \sum _{j=0}^{k}i_j \le {}&\max \left\{ 0, \frac{3}{2}+k\log _{\rho _{\!u}}\!\rho _{_{\!d}}+\log _{\rho _{\! u}}\frac{M(\nu ,\delta _{k+1})}{M_{0}}\right\} \\ \le {}&\frac{3}{2}+k\log _{\rho _{\!u}}\!\rho _{_{\!d}}+\left|{\log _{\rho _{\! u}}\frac{M(\nu ,\delta _{k+1})}{M_{0}}} \right|. \end{aligned} \end{aligned}$$

Since \(M(\nu ,\delta _{k+1}) = \delta _{k+1}^{\frac{\nu -1}{\nu +1}}[M_\nu (h)]^{\frac{2}{\nu +1}}\), we obtain (19) and complete the proof of Lemma 3.1.

Derivation of the Reformulation (20)

Observing line 10 of Algorithm 1, we obtain (20d). Given \((x_k,v_k,\lambda _k)\) and \((\gamma _k,\beta _k,M_{k})\), \((y_k,x_{k+1},v_{k+1})\) are nothing but the output of Algorithm 2 with the input \((k,S_k,M_{k,i_k})\), where \(S_k=\{x_k,v_k,\lambda _k,\beta _k,\gamma _k\}\). Hence, from lines 3 and 4, we obtain

$$\begin{aligned} \begin{aligned} {}&\frac{y_k-x_k}{\alpha _k} =v_k-y_k,\\ {}&\frac{x_{k+1}-x_k}{\alpha _k} ={} v_{k+1}-x_{k+1}, \end{aligned} \end{aligned}$$

which gives (20a) and (20c). Besides, we have

$$\begin{aligned} v_{k+1} = \mathop { {\mathop {\textrm{argmin}}\,}}\limits _{v\in Q}\left\{ g(v)+ \big \langle \nabla h(y_k)+A^\top \widetilde{\lambda }_k,v\big \rangle +\mu D_\phi (v,y_k)+ \frac{\gamma _k}{\alpha _k}D_\phi (v,v_k) \right\} , \end{aligned}$$

with \(\widetilde{\lambda }_k= \lambda _k+\alpha _k/\beta _k(Av_k-b)\). The optimality condition reads as

$$\begin{aligned} \begin{aligned} 0\in {}&\nabla h(y_k)+\partial g(v_{k+1})+N_Q(v_{k+1})+A^\top \widetilde{\lambda }_k\\ {}&\quad +\mu \left[ \nabla \phi (v_{k+1})-\nabla \phi (y_k)\right] +\frac{\gamma _{k}}{\alpha _k}\left[ \nabla \phi (v_{k+1})-\nabla \phi (v_k)\right] . \end{aligned} \end{aligned}$$

After rearranging, we get (20b).

Proof of Lemma 5.1

1.1 The Case \(\eta =\theta -1\)

The estimate (47) becomes

$$\begin{aligned} \sqrt{\varphi (t)}\frac{y'(t)}{y(t)}+R\frac{y'(t)}{y^{\theta }(t)}\le -\sigma (t). \end{aligned}$$
(60)

Since \(y(0) = 1\) and \(y'(t)\le 0\), it holds that \(0<y(t)\le 1\) for all \(t\ge 0\). As \(\varphi (t)\) is positive and nondecreasing, we obtain

$$\begin{aligned} \left( \sqrt{\varphi }\ln y\right) ' = \frac{\varphi '}{2\sqrt{\varphi }}\ln y + \sqrt{\varphi } \frac{y'}{y}\le \sqrt{\varphi } \frac{y'}{y}. \end{aligned}$$

Combining this with (60) gives

$$\begin{aligned} \begin{aligned} \left( \sqrt{\varphi (t)}\ln y(t)+\frac{R}{1-\theta }y^{1-\theta }(t)\right) '\le -\sigma (t), \end{aligned} \end{aligned}$$

and integrating over (0, t) leads to

$$\begin{aligned} \sqrt{\varphi (t)}\ln \frac{1}{y(t)}+\frac{R}{\theta -1}\left( y^{1-\theta }(t)-1\right) \ge \int _{0}^{t}\sigma (s)\,\textrm{d}s=\varSigma (t). \end{aligned}$$
(61)

Define

$$\begin{aligned} Y_1(t) := {}\exp \left( -\frac{\varSigma (t)}{2\sqrt{\varphi (t)}}\right) \quad \text {and}\quad Y_2(t) :={} \left( 1+\frac{\theta -1}{2R}\varSigma (t)\right) ^{\frac{1}{1-\theta }}. \end{aligned}$$
(62)

Then one finds that

$$\begin{aligned} \begin{aligned} {}&\sqrt{\varphi (t)}\ln \frac{1}{Y_1(t)}=\frac{1}{2}\varSigma (t),{} & {} Y_1(0) = 1,\\ {}&\frac{R}{\theta -1}\left( Y_2^{1-\theta }(t)-1\right) =\frac{1}{2}\varSigma (t),{} & {} Y_2(0) = 1. \end{aligned} \end{aligned}$$

This also implies

$$\begin{aligned} \sqrt{\varphi (t)}\ln \frac{1}{Y(t)}+\frac{R}{\theta -1}\left( Y^{1-\theta }(t)-1\right) \le \varSigma (t), \end{aligned}$$
(63)

where \(Y(t):= Y_1(t)+Y_2(t)\). For fixed \(t>0\), the function

$$\begin{aligned} v\longmapsto \sqrt{\varphi (t)}\ln \frac{1}{v}+\frac{R}{\theta -1}\left( v^{1-\theta }-1\right) \end{aligned}$$

is monotonously decreasing in terms of \(v\in (0,\infty )\). Collecting (61,63) yields that

$$\begin{aligned} y(t)\le Y(t)=\exp \left( -\frac{\varSigma (t)}{2\sqrt{\varphi (t)}}\right) + \left( 1+\frac{\theta -1}{2R}\varSigma (t)\right) ^{\frac{1}{1-\theta }}. \end{aligned}$$

This completes the proof of Lemma 5.1 with \(\eta =\theta -1\).

1.2 The Case \(\eta <\theta -1\)

The proof is in line with the previous case. With some elementary calculus computations, the estimate (61) now becomes

$$\begin{aligned} G(\varphi (t),y(t))\ge \varSigma (t), \end{aligned}$$

where \(G:(0,\infty )\times (0,\infty )\rightarrow \,{{\mathbb {R}}}\) is defined by

$$\begin{aligned} G(w,v): = \frac{\sqrt{w}}{\theta -\eta -1}(v^{\eta +1-\theta }-1)+\frac{R}{\theta -1}(v^{1-\theta }-1), \end{aligned}$$

for all \(w,\,v>0\). In addition to \(Y_2(t)\) defined in (62), we need

$$\begin{aligned} Y_3(t):= \left( 1+\frac{\theta -\eta -1}{2\sqrt{\varphi (t)}}\varSigma (t)\right) ^{\frac{1}{\eta +1-\theta }}. \end{aligned}$$

Since \(G(w,\cdot )\) is monotonously decreasing and

$$\begin{aligned} G(\varphi (t),Y_2(t)+Y_3(t))\le \varSigma (t)\le G(\varphi (t),y(t)), \end{aligned}$$

we obtain

$$\begin{aligned} y(t)\le \left( 1+\frac{\theta -1}{2R}\varSigma (t)\right) ^{\frac{1}{1-\theta }}+ \left( 1+\frac{\theta -\eta -1}{2\sqrt{\varphi (t)}}\varSigma (t)\right) ^{\frac{1}{\eta +1-\theta }}. \end{aligned}$$

This concludes the proof of Lemma 5.1 with \(\eta <\theta -1\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, H. A Universal Accelerated Primal–Dual Method for Convex Optimization Problems. J Optim Theory Appl 201, 280–312 (2024). https://doi.org/10.1007/s10957-024-02394-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-024-02394-6

Keywords

Mathematics Subject Classification

Navigation