Skip to main content
Log in

Structural, Electronic, Half-Metallic and Thermoelectric Properties of Quaternary Heusler Alloys AgCoFeZ (Z = Al, Ga, Si, Ge, and Sn), NiFeCrZ(Z = Al, Si, Ge, In) and NdCoMnGa: a First Principles Study

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The full-potential linearized augmented plane wave (FP-LAPW) approach of density functional theory has been utilized to systematically analyze the AgCoFeZ(Z = Al,Ga,Si,Ge, Sn), NiFeCrZ(Z = Al,Si,Ge,In) and NdCoMnGa materials. The electronic band structure and density of states (DOS) are determined using GGA, GGA + U, mBJ, mBJ + U and SCAN approximations. AgCoFeGe, AgCoFeSn, NdCoMnGa and NiFeCrAl exhibit half-metallic (HM) properties when their equilibrium lattice constants are optimally adjusted in the normal state and themagnetic moment of the alloys satisfies the value prescribed by the Slater-Pauling rule.We have analyzed the calculated DOS and energy bands of the alloys, and investigated the mechanism behind the formation of the HM band gap based on our research findings. The excellent HM property gives a good candidate for spin polarized material. Using spin density functional theory calculations, it is found that the given compounds are metallic in both spin channels. The thermoelectric properties have also been investigated in terms of Seebeck, electrical conductivity, thermal conductivity, power factor and figure of merit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

No Data associated in the manuscript".

References

  1. Wolf, S.A., Awschalom, D.D., Buhrman, R.A., et al.: Science 294, 1488 (2001)

    Article  ADS  Google Scholar 

  2. Alqurashi, H., Haleout, R., Hamad, B.: Comput. Mater. Sci. 210, 111477 (2021)

    Article  Google Scholar 

  3. Alqurashi, H., Haleout, R., Hamad, B.: Mater. Chem. Phys. 278, 125685 (2022)

    Article  Google Scholar 

  4. Alsayeah, S., Alqurashi, H., Andharih, E., et al.: J. Mag. Mag. Mater. 568, 170421 (2023)

    Article  Google Scholar 

  5. Haleoot, R., Hamad, B.: J. Electron. Mater. 48, 1164 (2018)

    Article  ADS  Google Scholar 

  6. Haleoot, R., Hamad, B.: J. Phys. Conden. Matter 32, 075402 (2019)

    Article  ADS  Google Scholar 

  7. Andharia, E., Alqurashi, H., Hamad, B.: Materials 15, 3128 (2022)

    Article  ADS  Google Scholar 

  8. Wei, X.-P., Zhang, Y.-L., Chu, Y.-D., et al.: J. Phys. Chem. Sol. 82, 28 (2015)

    Article  ADS  Google Scholar 

  9. De Groot, R.A., Mueller, F.M., van Engen, G.P., et al.: Phys. Rev. Let. 50, 2024 (1983)

    Article  ADS  Google Scholar 

  10. Hu, K., Xie, R., Shen, C., et al.: Acta Mater. 259, 119255 (2023)

    Article  Google Scholar 

  11. Zhang, G., Hao, H., Liang, Y., et al.: J. Mag. Mag. Mater. 584, 171071 (2023)

    Article  Google Scholar 

  12. Mondal, S., Ghosh, K., Ranganathan, R., et al.: J. Alloy. Compd. 961, 171050 (2023)

    Article  Google Scholar 

  13. Khandy, S.A.: Sci. Rep. 11(1), 20756 (2021)

    Article  ADS  Google Scholar 

  14. Dai, X.F., Liu, G.D., Fecher, G.H., et al.: J. Appl. Phys. 105, 07E901 (2009)

    Article  Google Scholar 

  15. Khandy, S.A., Chai, J.-D.: J. Alloy. Compd. 850, 156615 (2021)

    Article  Google Scholar 

  16. Berri, S., Ibrir, M., Maouche, D., et al.: Comput. Condens. Matter 1, 26 (2014)

    Article  Google Scholar 

  17. Berri, S., Ibrir, M., Maouche, D., et al.: J. Mag. Mag. Mater. 371, 106 (2014)

    Article  ADS  Google Scholar 

  18. Zhang, L., Cheng, Z.X., Wang, X.T., et al.: J. Supercond. Nov. Magn. 31, 189 (2018)

    Article  Google Scholar 

  19. Idrissi, S., Labrim, H., Ziti, S., et al.: Appl. Phys. A 126, 190 (2020)

    Article  ADS  Google Scholar 

  20. Amari, D., Mokhtari, M., Dahmane, F., et al.: Emergent Mater. 6, 299 (2023)

    Article  Google Scholar 

  21. Zhou, H.J., Huang, H.M., Luo, S.J.: Phys. Solid State 63, 272 (2021)

    Article  ADS  Google Scholar 

  22. Dharmaraja, P., Amudhavalli, A., Santhosh, M., et al.: Indian J. Phys. 97, 733 (2023)

    Article  ADS  Google Scholar 

  23. Zhou, Y., Zhang, J.M., Wei, X.M., et al.: J. Supercond. Nov. Magn. 33, 2235 (2020)

    Article  Google Scholar 

  24. Jia, L., Wang, T., Zhou, Y., et al.: Indian J Phys. 97, 3867–3874 (2023)

    Article  ADS  Google Scholar 

  25. Jafari, K., Ahmadian, F.: J. Supercond. Nov. Magn. 30, 2655 (2017)

    Article  Google Scholar 

  26. Zafar, M., Abbas, T., Shakil, M., et al.: J. Supercond. Nov. Magn. 35, 223 (2022)

    Article  Google Scholar 

  27. Han, Y.L., Wu, M.X., Kuang, M.Q., et al.: Results Phys. 11, 1134 (2018)

    Article  ADS  Google Scholar 

  28. Drews, J., Eberz, U., Schuster, H.U.: J. Less-Common Metals 116, 271 (1986)

    Article  Google Scholar 

  29. Zhu, H., He, R., Mao, J., et al.: Nat. Commun. 9, 2497 (2018)

    Article  ADS  Google Scholar 

  30. Alijani, V., Winterlik, J., Fecher, G.H., et al.: Phys. Rev. B 83, 184428 (2011)

    Article  ADS  Google Scholar 

  31. Madsen, G.K., Singh, D.J.: Comput. Phys. Commun. 175, 67 (2006)

    Article  ADS  Google Scholar 

  32. Blaha, P., Schwarz, K., Sorantin, P., et al.: Comput. Phys. Commun. 59, 399 (1990)

    Article  ADS  Google Scholar 

  33. Perdew, J.P., Burke, S., Ernzerhof, M.: Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  34. Berri, S., Gupta, D.C., Bouarissa, N.: Comput. Condens. Matter 32, e00716 (2022)

    Article  Google Scholar 

  35. Rai, D.P., Shankar, A., Sandeep, S., et al.: Armen. J. Phys. 5(3), 105 (2012)

    Google Scholar 

  36. Dudarev, S.L., Botton, G.A., Savrasov, S.Y., et al.: Phys. Rev. B 57, 1505 (1998)

    Article  ADS  Google Scholar 

  37. Sun, J.W., Ruzsinszky, A., Perdew, J.P.: Phys. Rev. Lett. 115, 036402 (2015)

    Article  ADS  Google Scholar 

  38. Sun, J., et al.: Nat. Chem. 8, 831 (2016)

    Article  ADS  Google Scholar 

  39. Tran, F., Blaha, P.: Phys. Rev. Lett. 102, 226401 (2009)

    Article  ADS  Google Scholar 

  40. Berri, S.: J. Supercond. Nov. Magn. 29, 1309 (2016)

    Article  Google Scholar 

  41. Berri, S.: Chin. J. Phys. 55(1), 195 (2017)

    Article  Google Scholar 

  42. Berri, S.: Comput. Condens. Matter 28, e00586 (2021)

    Article  Google Scholar 

  43. Berri, S.: J. Phys. Chem. Solids 170, 110940 (2022)

    Article  Google Scholar 

  44. Berri, S.: J. Supercond. Nov. Magn. 10, 1007 (2020)

    Google Scholar 

  45. Yu, Q., Huang, H.M., Wang, H.J., et al.: J. Supercond. Nov. Magn. 35, 2837–2850 (2022)

    Article  Google Scholar 

  46. Nepal, S., Dhakal, R., Galanakis, I., et al.: Phys. Rev. Mater. 6, 114407 (2022)

    Article  Google Scholar 

  47. Pandit, A., Haleoot, R., Hamad, B.: J. Mater. Sci. 56, 10424 (2021)

    Article  ADS  Google Scholar 

  48. Gao, Q., Li, L., Lei, G., et al.: J. Magn. Magn. Mater. 379, 288 (2015)

    Article  ADS  Google Scholar 

  49. Zhang, Y., Yang, Y., Jiang, H.: J. Phys. Chem. A 117, 13194 (2013)

    Article  Google Scholar 

  50. Majid, A., Azmat, M., Ali Rana, U., et al.: Mater. Chem. Phys. 179, 316 (2016)

    Article  Google Scholar 

  51. Wang, S., Yu, J.: J. Supercond. Nov. Mag. 31, 2789 (2018)

    Article  Google Scholar 

  52. Jain, R., Lakshmi, N., Jain, V.K., et al.: Am. Inst. Phys. 1942, 090011 (2018)

    Google Scholar 

  53. Reshak, A.H., Khan, W.: J. Alloy. Compd. 591, 362 (2014)

    Article  Google Scholar 

  54. Singh, J., Kaur, K., Khandy, S.A., et al.: Int. J. Energy Res. 45(11), 16891 (2021)

    Article  Google Scholar 

  55. Ismail, B.I., Ahmed, W.H.: Recent Patents Electr. Eng. 2, 27 (2009)

    Article  Google Scholar 

  56. Singh, J., et al.: Mater. Today Commun. 32, 103961 (2022)

    Article  MathSciNet  Google Scholar 

  57. Jeon, H.-W., Ha, H.-P., Hyun, D.-B., Shim, J.-D.: J. Phys. Chem. Sol. 52, 579 (1991)

    Article  ADS  Google Scholar 

  58. Yamashita, O., Tomiyoshi, S., Makita, K.: J. Appl. Phys. 93, 368 (2003)

    Article  ADS  Google Scholar 

  59. Khandy, S.A., Chai, J.-D.: J. Appl. Phys. 127, 165102 (2020)

    Article  ADS  Google Scholar 

Download references

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Both (All) authors have contributed equally to the work.

Corresponding author

Correspondence to Saadi Berri.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ketfi, M., Berri, S., Maouche, D. et al. Structural, Electronic, Half-Metallic and Thermoelectric Properties of Quaternary Heusler Alloys AgCoFeZ (Z = Al, Ga, Si, Ge, and Sn), NiFeCrZ(Z = Al, Si, Ge, In) and NdCoMnGa: a First Principles Study. J Supercond Nov Magn 37, 737–751 (2024). https://doi.org/10.1007/s10948-024-06701-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-024-06701-0

Keywords

Navigation