Skip to main content
Log in

Spectral Types of Long-Period Double-Lined Eclipsing Binary System Components from Low-Resolution Spectroscopy Data

  • Published:
Astrophysical Bulletin Aims and scope Submit manuscript

Abstract

We present the results of spectral observations and consequent analysis of six long-period double-lined eclipsing binaries (DLEBs) with main-sequence (MS) components from a sample formed with the aim of testing the ‘‘mass–luminosity’’ relation (MLR) for stars in the \(M/M_{\odot}>1.5\) mass range. We analyzed all the obtained spectra using a technique that allows one to reveal the binary nature of the system and determine \(T_{\textrm{eff}}\) and \(\log g\) for each component, as well as the system metallicity [Fe/H] and line-of-sight extinction \(E(B-V)\). We computed the absolute parameters of the systems under consideration. An analysis of the obtained spectra shows that for three of the six objects (V1156 Cyg, EU Gem and V733 Per) we can clearly establish their binary nature and determine the spectral type and class for each component. Both components of the V733 Per system have already left the MS, and therefore the system must be excluded from our sample, whereas studies of V1156 Cyg and EU Gem should continue. OT And did not demonstrate a binary spectrum, however, the main component of the system is a hot A6 V star, and therefore, OT And should remain in our sample. We also revealed no binarity in the IM Del and LX Gem systems. Their brighter components turned out to be a cool giant and a supergiant, and these systems should be excluded from the sample based on the results of our analysis. We used the same technique to analyze the two spectra obtained for systems EU Gem and LX Gem using LAMOST. We have shown that the parameters determined from LAMOST spectra are in good agreement with the parameters determined for spectra obtained at the Caucasian Mountain Observatory (CMO) of SAI MSU. Our analysis allowed us to plot a first approximation of the V1156 Cyg velocity curves and show that the cool component in this system has a larger mass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Notes

  1. https://lmfit.github.io/lmfit-py/

  2. http://dr8.lamost.org

  3. https://pypi.org/project/uncertainties/

REFERENCES

  1. E. A. Avvakumova, O. Y. Malkov, and A. Y. Kniazev, Astronomische Nachrichten 334 (8), 860 (2013).

    Article  CAS  ADS  Google Scholar 

  2. S. I. Barnes, P. L. Cottrell, M. D. Albrow, et al., SPIE Conf. Proc. 7014, 70140K (2008).

  3. G. F. Benedict, T. J. Henry, O. G. Franz, et al., Astron. J. 152 (5), article id. 141 (2016).

  4. D. G. Bramall, J. Schmoll, L. M. G. Tyas, et al., SPIE Conf. Proc. 8446, p. 84460A (2012).

  5. D. G. Bramall, R. Sharples, L. Tyas, et al., SPIE Conf. Proc. 7735, 77354F (2010).

  6. D. A. H. Buckley, G. P. Swart, and J. G. Meiring, SPIE Conf. Proc. 6267, 62670Z (2006).

  7. B. Cester, S. Ferluga, and C. Boehm, Astrophys. and Space Sci. 96 (1), 125 (1983).

    Article  ADS  Google Scholar 

  8. X.-L. Chen, A.-L. Luo, J.-J. Chen, et al., arXiv e-prints astro/ph:2209.10714 (2022).

  9. P. R. T. Coelho, Monthly Notices Royal Astron. Soc. 440 (2), 1027 (2014).

    Article  ADS  Google Scholar 

  10. L. A. Crause, R. M. Sharples, D. G. Bramall, et al., SPIE Conf. Proc. 9147, 91476T (2014).

  11. R. C. Crawford, S. I. Ingvarsson, L. J. Boyd, et al., Inform. Bull. Var. Stars 2624, 1 (1984).

    Google Scholar 

  12. O. Demircan and G. Kahraman, Astrophys. and Space Sci. 181 (2), 313 (1991).

    Article  ADS  Google Scholar 

  13. P. P. Eggleton, Astrophys. J. 268, 368 (1983).

    Article  ADS  Google Scholar 

  14. F. C. Fekel, G. W. Henry, J. R. Sowell, et al., Astron. J. 164 (5), id. 224 (2022).

  15. C. Friedemann and H. G. Reimann, Inform. Bull. Var. Stars 3549, 1 (1991).

    Google Scholar 

  16. D. F. Gray, The observation and analysis of stellar photospheres, 2nd ed. (Cambridge University Press, Cambridge, 1992).

    Google Scholar 

  17. V. V. Gvaramadze, A. Y. Kniazev, J. S. Gallagher, et al., Monthly Notices Royal Astron. Soc. 503 (3), 3856 (2021).

    Article  CAS  ADS  Google Scholar 

  18. K. Hawkins, M. Lucey, Y.-S. Ting, et al., Monthly Notices Royal Astron. Soc. 492 (1), 1164 (2020).

    Article  CAS  ADS  Google Scholar 

  19. A. N. Heinze, J. L. Tonry, L. Denneau, et al., Astron. J. 156 (5), article id. 241 (2018).

  20. E. Hertzsprung, Bull. Astron. Inst. Netherlands 2, 15 (1923).

    ADS  Google Scholar 

  21. C. Hoffmeister, Astronomische Nachrichten 290, 277 (1968).

    Article  ADS  Google Scholar 

  22. D. Husar, Open European Journal on Variable Stars 0010, 1 (2005).

    ADS  Google Scholar 

  23. T. O. Husser, S. Wende-von Berg, S. Dreizler, et al., Astron. and Astrophys. 553, id. A6 (2013).

  24. R. G. Izzard, H. Preece, P. Jofre, et al., Monthly Notices Royal Astron. Soc. 473 (3), 2984 (2018).

    Article  CAS  ADS  Google Scholar 

  25. T. Jayasinghe, C. S. Kochanek, K. Z. Stanek, et al., Monthly Notices Royal Astron. Soc. 477 (3), 3145 (2018).

    Article  ADS  Google Scholar 

  26. T. Kinnunen and B. A. Skiff, Inform. Bull. Var. Stars 4896, 1 (2000).

    Google Scholar 

  27. A. Kniazev, Astrophys. and Space Sci. 365 (10), article id. 169 (2020).

  28. A. Kniazev, Astrophysical Bulletin 77 (3), 334 (2022).

    Article  ADS  Google Scholar 

  29. A. Y. Kniazev, V. V. Gvaramadze, and L. N. Berdnikov, Monthly Notices Royal Astron. Soc. 459 (3), 3068 (2016).

    Article  CAS  ADS  Google Scholar 

  30. A. Y. Kniazev, O. Y. Malkov, I. Y. Katkov, and L. N. Berdnikov, Research Astron. and Astroph. 20 (8), id. 119 (2020).

  31. A. Y. Kniazev, I. A. Usenko, V. V. Kovtyukh, and L. N. Berdnikov, Astrophysical Bulletin 74 (2), 208 (2019).

    Article  ADS  Google Scholar 

  32. M. Kovalev, S. Wang, X. Chen, and Z. Han, Monthly Notices Royal Astron. Soc. 519 (4), 5454 (2023).

    Article  ADS  Google Scholar 

  33. B. V. Kukarkin, Y. N. Efremov, M. S. Frolov, et al., Inform. Bull. Var. Stars 311, 1 (1968).

    Google Scholar 

  34. B. V. Kukarkin, P. N. Kholopov, N. P. Kukarkina, and N. B. Perova, Inform. Bull. Var. Stars 717, 1 (1972).

    Google Scholar 

  35. X.-W. Liu, G. Zhao, and J.-L. Hou, Research Astron. and Astroph. 15 (8), 1089 (2015).

    Article  CAS  ADS  Google Scholar 

  36. O. Malkov and A. Kniazev, Open Astronomy 31 (1), 327 (2022).

    Article  ADS  Google Scholar 

  37. O. Malkov, D. Kovaleva, L. Yungelson, et al., Baltic Astronomy 25, 384 (2016).

    ADS  Google Scholar 

  38. O. Y. Malkov, Astron. and Astrophys. 402, 1055 (2003).

    Article  ADS  Google Scholar 

  39. O. Y. Malkov, Monthly Notices Royal Astron. Soc. 382, 1073 (2007).

    Article  ADS  Google Scholar 

  40. O. Y. Malkov, Monthly Notices Royal Astron. Soc. 491 (4), 5489 (2020).

    Article  ADS  Google Scholar 

  41. O. Y. Malkov, Astronomical and Astrophysical Transactions 32 (2), 111 (2021).

    Article  ADS  Google Scholar 

  42. O. Y. Malkov, E. Oblak, E. A. Snegireva, and J. Torra, Astron. and Astrophys. 446 (2), 785 (2006).

    Article  ADS  Google Scholar 

  43. T. D. Muhie, A. K. Dambis, L. N. Berdnikov, et al., Monthly Notices Royal Astron. Soc. 502 (3), 4074 (2021).

    Article  CAS  ADS  Google Scholar 

  44. D. O’Donoghue, D. A. H. Buckley, L. A. Balona, et al., Monthly Notices Royal Astron. Soc. 372 (1), 151 (2006).

    Article  ADS  Google Scholar 

  45. S. A. Otero, P. Wils, and P. A. Dubovsky, Inform. Bull. Var. Stars 5586, 1 (2005).

    Google Scholar 

  46. P. Pakhomova, L. Berdnikov, A. Kniazev, et al., Open Astronomy 31 (1), 106 (2022).

    Article  ADS  Google Scholar 

  47. G. Pojmanski, Acta Astronomica 47, 467 (1997).

    ADS  Google Scholar 

  48. S. A. Potanin, A. A. Belinski, A. V. Dodin, et al., Astronomy Letters 46 (12), 836 (2020).

    Article  ADS  Google Scholar 

  49. T. Prusti et al. (Gaia Collab.), Astron. and Astrophys. 595, id. A1 (2016).

  50. S. B. Qian, J. Zhang, J. J. He, et al., Astrophys. J. Suppl. 235 (1), article id. 5 (2018).

  51. G. A. Richter, Zentralinstitut fuer Astrophysik Sternwarte Sonneberg Mitteilungen ueber Veraenderliche Sterne 5, 99 (1970).

  52. N. N. Samus, O. V. Durlevich, et al., VizieR Online Data Catalog II/250 (2004).

  53. V. Straizys and G. Kuriliene, Astrophys. and Space Sci. 80 (2), 353 (1981).

    Article  ADS  Google Scholar 

  54. G. Torres, J. Andersen, and A. Giménez, Astron. and Astrophys. 18, 67 (2010).

    Google Scholar 

  55. A. Vallenari et al. (Gaia Collab.), arXiv e-prints astro/ph:2208.00211 (2022).

  56. A. A. Wachmann, Astronomische Abhandlungen der Hamburger Sternwarte 6, 281 (1966).

    ADS  Google Scholar 

  57. R. Wang, A.-L. Luo, S. Zhang, et al., Publ. Astron. Soc. Pacific 131 (996), 024505 (2019).

  58. P. R. Woźniak, S. J. Williams, W. T. Vestrand, and V. Gupta, Astron. J. 128 (6), 2965 (2004).

    Article  ADS  Google Scholar 

  59. Y. Wu, A. L. Luo, H.-N. Li, et al., Research Astron. and Astroph. 11 (8), 924 (2011).

    Article  CAS  ADS  Google Scholar 

  60. B. Yanny, C. Rockosi, H. J. Newberg, et al., Astron. J. 137 (5), 4377 (2009).

    Article  CAS  ADS  Google Scholar 

  61. B. Zhang, Y.-J. Jing, F. Yang, et al., Astrophys. J. Suppl. 258 (2), id. 26 (2022).

  62. J. Zhang, S.-B. Qian, Y. Wu, and X. Zhou, Astrophys. J. Suppl. 244 (2), article id. 43 (2019).

Download references

ACKNOWLEDGMENTS

A.Yu. Kniazev is grateful to South Africa’s National Research Foundation for the support of this work. This work has made use of data from the European Space Agency (ESA) mission Gaia (https://www.cosmos.esa.int/gaia), processed by the Gaia Data Processing and Analysis Consortium (DPAC, https://www.cosmos.esa.int/web/gaia/dpac/consortium). Funding for the DPAC has been provided by national institutions, in particular the institutions participating in the Gaia Multilateral Agreement.

Funding

I.Yu. Katkov is grateful to the Russian Science Foundation grant no. 21-72-00036 for the support of the spectral decomposition method development. This research is supported within the framework of grant no. 075-15-2022-262 (13.MNPMU.21.0003) of the Ministry of Science and Higher Education of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Kniazev.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kniazev, A.Y., Katkov, I.Y., Malkov, O.Y. et al. Spectral Types of Long-Period Double-Lined Eclipsing Binary System Components from Low-Resolution Spectroscopy Data. Astrophys. Bull. 78, 535–549 (2023). https://doi.org/10.1134/S1990341323700177

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990341323700177

Keywords:

Navigation