Skip to main content
Log in

Radio Properties of High-Redshift Galaxies at \(\boldsymbol{z\geq 1}\)

  • Published:
Astrophysical Bulletin Aims and scope Submit manuscript

Abstract

Study of high-redshift radio galaxies (HzRGs) can shed light on the active galactic nuclei (AGNs) evolution in massive elliptical galaxies. The vast majority of observed high-redshift AGNs are quasars, and there are very few radio galaxies at redshifts \(z>3\). We present the radio properties of 173 sources optically identified with radio galaxies at \(z\geq 1\) with flux densities \(S_{1.4}\geq 20\) mJy. Literature data were collected for compilation of broadband radio spectra, estimation of radio variability, radio luminosity, and radio loudness. Almost 60\(\%\) of the galaxies have steep or ultra-steep radio spectra; 22\(\%\) have flat, inverted, upturn, and complex spectral shapes, and 18\(\%\) have peaked spectra (PS). The majority of the PS sources in the sample (20/31) are megahertz-peaked spectrum source candidates, i.e. possibly very young and compact radio galaxies. The median values of the variability indices at 11 and 5 GHz are \(V_{S_{11}}=0.14\) and \(V_{S_{5}}=0.13\), which generally indicates a weak or moderate character of the long-term variability of the studied galaxies. The typical radio luminosity and radio loudness are \(L_{5}=10^{43}{-}10^{44}\) erg s\({}^{-1}\) and \(\log R=3{-}4\) respectively. We have found less prominent features of the bright compact radio cores in our sample compared to high-redshift quasars at \(z\geq 3\). The variety of the obtained radio properties shows the different conditions for the formation of radio emission sources in galaxies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.

Notes

  1. http://www.askanastronomer.co.uk/brats/

  2. Determined in assumption of the power law relation between the flux density \(S_{\nu}\) at a frequency \(\nu\) and the spectral index \(\alpha\): \(S_{\nu}\sim\nu^{\alpha}\).

  3. Astronomical CATalogs support System (http:// cats.sao.ru).

  4. NASA/IPAC Extragalactic Database (http://ned.ipac. caltech.edu).

  5. http://www.sdss.org

  6. https://vizier.u-strasbg.fr/viz-bin/VizieR

  7. https://astroquery.readthedocs.io

  8. http://www.sdss.org/dr13/data_access/bulk/

  9. The average spectra were approximated by parabolas, and then we calculated the spectral index as a derivative at a given frequency.

  10. http://astrogeo.org

REFERENCES

  1. P. A. R. Ade et al. (Planck Collab.), Astron. and Astrophys. 536, id. A14 (2011).

  2. P. A. R. Ade et al. (Planck Collab.), Astron. and Astrophys. 594, id. A13 (2016).

  3. J. Afonso, L. Bizzocchi, E. Ibar, et al., Astrophys. J. 743 (2), article id. 122 (2011).

  4. M. F. Aller, H. D. Aller, and P. A. Hughes, Astrophys. J. 399, 16 (1992).

    Article  ADS  Google Scholar 

  5. T. An, A. Wang, Y. Zhang, et al., Monthly Notices Royal Astron. Soc. 511 (3), 4572 (2022).

    Article  ADS  Google Scholar 

  6. A. K. Aniyan and K. Thorat, Astrophys. J. Suppl. 230 (2), article id. 20 (2017).

  7. S. K. Balayan and O. V. Verkhodanov, Astrophysics 47 (4), 505 (2004).

    Article  ADS  Google Scholar 

  8. R. H. Becker, R. L. White, and D. J. Helfand, ASP Conf. Ser. 61, 165 (1994).

  9. J. J. Bryant, H. M. Johnston, J. W. Broderick, et al., Astron. and Astrophys. 395, 1099 (2009).

    Google Scholar 

  10. N. N. Bursov, N. M. Lipovka, N. S. Soboleva, et al., Bull. Spec. Astrophys. Obs. 42, 5 (1996).

    ADS  Google Scholar 

  11. J. R. Callingham, R. D. Ekers, B. M. Gaensler, et al., Astrophys. J. 836 (2), article id. 174 (2017).

  12. K. C. Chambers, G. K. Miley, W. J. M. van Breugel, and J. S. Huang, Astrophys. J. Suppl. 106, 215 (1996).

    Article  Google Scholar 

  13. Z.-F. Chen, W.-R. Huang, T.-T. Pang, et al., Astrophys. J. Suppl. 235 (1), article id. 11 (2018).

  14. Z.-F. Chen, S.-X. Yi, T.-T. Pang, et al., Astron. and Astrophys. 244 (2), article id. 36 (2019).

  15. J. H. Y. Ching, E. M. Sadler, S. M. Croom, et al., Monthly Notices Royal Astron. Soc. 464 (2), 1306 (2017).

    Article  ADS  CAS  Google Scholar 

  16. A. S. Cohen, W. M. Lane, W. D. Cotton, et al., Astron. J. 134 (3), 1245 (2007).

    Article  ADS  Google Scholar 

  17. J. J. Condon, W. D. Cotton, E. W. Greisen, et al., Astron. J. 115 (5), 1693 (1998).

    Article  ADS  Google Scholar 

  18. E. A. Cooke, N. A. Hatch, A. Rettura, et al., Monthly Notices Royal Astron. Soc. 452 (3), 2318 (2015).

    Article  ADS  Google Scholar 

  19. R. Coppejans, D. Cseh, S. van Velzen, et al., Monthly Notices Royal Astron. Soc. 459, 2455 (2016a).

    Article  ADS  Google Scholar 

  20. R. Coppejans, D. Cseh, W. L. Williams, et al., Monthly Notices Royal Astron. Soc. 450 (2), 1477 (2015).

    Article  ADS  Google Scholar 

  21. R. Coppejans, S. Frey, D. Cseh, et al., Monthly Notices Royal Astron. Soc. 463, 3260 (2016b).

    Article  ADS  Google Scholar 

  22. R. Coppejans, S. van Velzen, H. T. Intema, et al., Monthly Notices Royal Astron. Soc. 467 (2), 2039 (2017).

    ADS  CAS  Google Scholar 

  23. R. D’Abrusco, N. Álvarez Crespo, F. Massaro, et al., Astrophys. J. Suppl. 242 (1), article id. 4 (2019).

  24. D. Dallacasa, C. Stanghellini, M. Centonza, and R. Fanti, Astron. and Astrophys. 363, 887 (2000).

    ADS  Google Scholar 

  25. A. L. R. Danielson, A. M. Swinbank, I. Smail, et al., Astrophys. J. 840 (2), article id. 78 (2017).

  26. C. De Breuck, N. Seymour, D. Stern, et al., Astrophys. J. 725, 36 (2010).

    Article  ADS  Google Scholar 

  27. C. De Breuck, W. van Breugel, H. J. A. Röttgering, and G. Miley, Astron. and Astrophys. Suppl. 143, 303 (2000).

    ADS  Google Scholar 

  28. W. H. de Vries, P. D. Barthel, and C. P. O’Dea, Astron. and Astrophys. 321, 105 (1997).

    ADS  Google Scholar 

  29. J. N. Douglas, F. N. Bash, F. A. Bozyan, et al., Astron. J. 111, 1945 (1996).

    Article  ADS  CAS  Google Scholar 

  30. P. G. Edwards and S. J. Tingay, Astron. and Astrophys. 424, 91 (2004).

    Article  ADS  CAS  Google Scholar 

  31. H. Falcke, E. Körding, and N. M. Nagar, New Astronomy Reviews 48 (11–12), 1157 (2004).

    Article  ADS  Google Scholar 

  32. J. H. Fan, Y. Liu, Y. H. Yuan, et al., Astron. and Astrophys. 462 (2), 547 (2007).

    Article  ADS  Google Scholar 

  33. R. Fanti, C. Fanti, R. T. Schilizzi, et al., Astron. and Astrophys. 231, 333 (1990).

    ADS  Google Scholar 

  34. S. Frey, Z. Paragi, L. I. Gurvits, et al., Astron. and Astrophys. 524, id. A83 (2010).

  35. K. É. Gabányi, S. Frey, T. An, et al. Astronomische Nachrichten 342, 1092 (2021).

    Article  ADS  Google Scholar 

  36. M. A. Gendre and J. V. Wall, Monthly Notices Royal Astron. Soc. 390 (2), 819 (2008).

    ADS  Google Scholar 

  37. Z. Ghaffari, M. Haas, M. Chiaberge, et al., Astron. and Astrophys. 653, id. 28 (2021).

  38. G. Ghisellini, A. Celotti, F. Tavecchio, et al., Monthly Notices Royal Astron. Soc. 438, 2694 (2014).

    Article  ADS  Google Scholar 

  39. A. Ginsburg, B. M. Sipőcz, C. E. Brasseur, et al., Astron. J. 157 (3), article id. 98 (2019).

  40. V. L. Gorokhov and O. V. Verkhodanov, Astronomy Letters 20, 671 (1994).

    ADS  Google Scholar 

  41. J. F. R. Gower, P. F. Scott, and D. Wills, Memoirs of the Royal Astronomical Society 71, 49 (1967).

    ADS  Google Scholar 

  42. P. C. Gregory, W. K. Scott, K. Douglas, and J. J. Condon, Astrophys. J. Suppl. 103, 427 (1996).

    Article  Google Scholar 

  43. N. Gupta and D. J. Saikia, Monthly Notices Royal Astron. Soc. 370 (2), 738 (2006).

    Article  ADS  CAS  Google Scholar 

  44. J. J. Harwood, M. J. Hardcastle, and J. H. Croston, Monthly Notices Royal Astron. Soc. 454 (4), 3403 (2015).

    Article  ADS  Google Scholar 

  45. J. J. Harwood, M. J. Hardcastle, J. H. Croston, and J. L. Goodger, Monthly Notices Royal Astron. Soc. 435 (4), 3353 (2013).

    Article  ADS  Google Scholar 

  46. S. E. Healey, R. W. Romani, G. Cotter, et al., Astrophys. J. Suppl. 175 (1), 97 (2008).

    Article  ADS  CAS  Google Scholar 

  47. S. E. Healey, R. W. Romani, G. B. Taylor, et al., Astrophys. J. Suppl. 171 (1), 61 (2007).

    Article  ADS  CAS  Google Scholar 

  48. E. Hodges-Kluck, E. Gallo, G. Ghisellini, et al., Monthly Notices Royal Astron. Soc. 505 (1), 1543 (2021).

    Article  ADS  CAS  Google Scholar 

  49. N. Hurley-Walker, J. R. Callingham, P. J. Hancock, et al., Monthly Notices Royal Astron. Soc. 464 (1), 1146 (2017).

    Article  ADS  Google Scholar 

  50. H. T. Intema, P. Jagannathan, K. P. Mooley, and D. A. Frail, Astron. and Astrophys. 598, id. A78 (2017).

  51. T. H. Jarrett, M. Cohen, F. Masci, et al., Astron. J. 735 (2), article id. 112 (2011).

  52. A. Jimenez-Gallardo, F. Massaro, M. A. Prieto, et al., Astrophys. J. Suppl. 250 (1), id. 7 (2020).

  53. K. I. Kellermann, Astrophys. J. 140, 969 (1964).

    Article  ADS  Google Scholar 

  54. K. I. Kellermann, I. I. K. Pauliny-Toth, and P. J. S. Williams, Astrophys. J. 157, 1 (1969).

    Article  ADS  Google Scholar 

  55. K. I. Kellermann, R. Sramek, M. Schmidt, et al., Astron. J. 98, 1195 (1989).

    Article  ADS  Google Scholar 

  56. L. M. Ker, P. N. Best, E. E. Rigby, et al., Monthly Notices Royal Astron. Soc. 420 (3), 2644 (2012).

    Article  ADS  Google Scholar 

  57. M. L. Khabibullina and O. V. Verkhodanov, Bull. Spec. Astrophys. Obs. 64 (2), 123 (2009a).

    Article  Google Scholar 

  58. M. L. Khabibullina and O. V. Verkhodanov, Bull. Spec. Astrophys. Obs. 64 (3), 276 (2009b).

    Article  Google Scholar 

  59. M. L. Khabibullina and O. V. Verkhodanov, Bull. Spec. Astrophys. Obs. 64 (4), 340 (2009c).

    Article  Google Scholar 

  60. M. L. Khabibullina, O. V. Verkhodanov, and Y. N. Parijskij, Bull. Spec. Astrophys. Obs. 63, 95 (2008).

    Article  Google Scholar 

  61. S. O. Kiikov, M. G. Mingaliev, V. A. Stolyarov, and M. S. Stupalov, Bull. Spec. Astrophys. Obs. 54, 5 (2002).

    ADS  Google Scholar 

  62. I. J. Klamer, R. D. Ekers, J. J. Bryant, et al., Monthly Notices Royal Astron. Soc. 371 (2), 852 (2006).

    Article  ADS  CAS  Google Scholar 

  63. A. I. Kopylov, W. M. Goss, Y. N. Pariiskii, et al., Astronomy Letters 32 (7), 433 (2006).

    Article  ADS  CAS  Google Scholar 

  64. Y. Y. Kovalev, N. A. Nizhelsky, Y. A. Kovalev, et al., Astron. and Astrophys. Suppl. 139, 545 (1999).

    ADS  Google Scholar 

  65. A. Kraus, T. P. Krichbaum, R. Wegner, et al., Astron. and Astrophys. 401, 161 (2003).

    Article  ADS  Google Scholar 

  66. M. Krezinger, K. Perger, K. É. Gabányi, et al., Astrophys. J. Suppl. 260 (2), id. 49 (2022).

  67. J. K. Krogager, N. Gupta, P. Noterdaeme, et al., Astrophys. J. Suppl. 235 (1), article id. 10 (2018).

  68. A. Labiano, P. D. Barthel, C. P. O’Dea, et al., Astron. and Astrophys. 463 (1), 97 (2007).

    Article  ADS  CAS  Google Scholar 

  69. M. Lacy, S. A. Baum, C. J. Chandler, et al., Publ. Astron. Soc. Pacific 132 (1009), id. 035001 (2020).

  70. M. Lacy, L. J. Storrie-Lombardi, A. Sajina, et al., Astrophys. J. Suppl. 154 (1), 166 (2004).

    Article  ADS  CAS  Google Scholar 

  71. M. Langejahn, M. Kadler, J. Wilms, et al., Astron. and Astrophys. 637, id. 55 (2020).

  72. G. B. Lansbury, D. Stern, J. Aird, et al., Astrophys. J. 836 (1), article id. 99 (2017).

  73. A. Lawrence, A. G. Bruce, C. MacLeod, et al., Monthly Notices Royal Astron. Soc. 463 (1), 296 (2016).

    Article  ADS  CAS  Google Scholar 

  74. T. J. W. Lazio, E. B. Waltman, F. D. Ghigo, et al., Astrophys. J. Suppl. 136 (2), 265 (2001).

    Article  ADS  Google Scholar 

  75. M. Liao and M. Gu, Monthly Notices Royal Astron. Soc. 491 (1), 92 (2020).

    Article  ADS  CAS  Google Scholar 

  76. I. Liodakis, V. Pavlidou, T. Hovatta, et al., Monthly Notices Royal Astron. Soc. 467 (4), 4565 (2017).

    Article  ADS  CAS  Google Scholar 

  77. Y. Liu, D. R. Jiang, M. Gu, and L. I. Gurvits, Astronomische Nachrichten 337 (1-2), 101 (2016).

    Article  ADS  CAS  Google Scholar 

  78. B. W. Lyke, A. N. Higley, J. N. McLane, et al., Astrophys. J. Suppl. 250 (1), id. 8 (2020).

  79. Z. Ma, H. Xu, J. Zhu, et al., Astrophys. J. Suppl. 240 (2), article id. 34 (2019).

  80. E. K. Majorova, Bull. Spec. Astrophys. Obs. 63, 56 (2008).

    Google Scholar 

  81. Z. Malkin, Astrophys. J. Suppl. 239 (2), article id. 20 (2018).

  82. A. P. Marscher, S. G. Jorstad, F. D. D’Arcangelo, et al., Nature (London)452 (7190), 966 (2008).

  83. T. A. Matthews, W. W. Morgan, and M. Schmidt, Astrophys. J. 140, 35 (1964).

    Article  ADS  Google Scholar 

  84. T. Mauch, H.-R. Klöckner, S. Rawlings, et al., Monthly Notices Royal Astron. Soc. 435 (1), 650 (2013).

    Article  ADS  Google Scholar 

  85. G. Miley and C. De Breuck, Astron. and Astrophys. 15, 67 (2008a).

    Google Scholar 

  86. G. Miley and C. De Breuck, Astron. and Astrophys. 15 (2), 67 (2008b).

    Google Scholar 

  87. M. Mingaliev, Y. Sotnikova, T. Mufakharov, et al., Astronomische Nachrichten 338, 700 (2017).

    Article  ADS  Google Scholar 

  88. M. G. Mingaliev, A. M. Botashev, and V. A. Stolyarov, Bull. Spec. Astrophys. Obs. 46, 28 (1998).

    ADS  Google Scholar 

  89. M. G. Mingaliev, Y. V. Sotnikova, T. V. Mufakharov, et al., Astrophysical Bulletin 68, 262 (2013).

    Article  ADS  Google Scholar 

  90. M. G. Mingaliev, Y. V. Sotnikova, I. Torniainen, et al., Astron. and Astrophys. 544, A25 (2012).

    Article  Google Scholar 

  91. M. G. Mingaliev, V. A. Stolyarov, R. D. Davies, et al., Astron. and Astrophys. 370, 78 (2001).

    Article  ADS  Google Scholar 

  92. L. K. Morabito and J. J. Harwood, Monthly Notices Royal Astron. Soc. 480 (2), 2726 (2018).

    Article  ADS  CAS  Google Scholar 

  93. T. Mufakharov, A. Mikhailov, Y. Sotnikova, et al., Monthly Notices Royal Astron. Soc. 503 (3), 4662 (2021).

    Article  ADS  CAS  Google Scholar 

  94. T. Murphy, E. M. Sadler, R. D. Ekers, et al., Monthly Notices Royal Astron. Soc. 402 (4), 2403 (2010).

    Article  ADS  Google Scholar 

  95. N. P. H. Nesvadba, C. De Breuck, M. D. Lehnert, et al., Astron. and Astrophys. 599, id. 123 (2017).

  96. G. Noirot, D. Stern, S. Mei, et al., Astrophys. J. 859 (1), article id. 38 (2018).

  97. F. Ochsenbein, P. Bauer, and J. Marcout, Astron. and Astrophys. Suppl. 143, 23 (2000).

    ADS  Google Scholar 

  98. C. P. O’Dea, Monthly Notices Royal Astron. Soc. 245, 20P (1990).

    ADS  Google Scholar 

  99. C. P. O’Dea, Publ. Astron. Soc. Pacific 110, 493 (1998).

    Article  ADS  Google Scholar 

  100. C. P. O’Dea and S. A. Baum, Astron. J. 113, 148 (1997).

    Article  ADS  Google Scholar 

  101. C. P. O’Dea, S. A. Baum, and G. B. Morris, Astron. and Astrophys. Suppl. 82, 261 (1990).

    ADS  Google Scholar 

  102. C. P. O’Dea, S. A. Baum, and C. Stanghellini, Astrophys. J. 380, 66 (1991).

    Article  ADS  Google Scholar 

  103. C. P. O’Dea and D. J. Saikia, Astron. and Astrophys.r 29 (1), 3 (2021).

  104. A. G. Pacholczyk, Radio Astrophysics. Nonthermal Processes in Galactic and Extragalactic Sources (Freeman, San Francisco, 1970).

    Google Scholar 

  105. Y. N. Parijskij, W. M. Goss, O. V. Verkhodanov, et al., Bull. Spec. Astrophys. Obs. 48, 5 (1999).

    ADS  Google Scholar 

  106. Y. N. Parijskij, P. Thomasson, A. I. Kopylov, et al., Monthly Notices Royal Astron. Soc. 439, 2314 (2014).

    Article  ADS  Google Scholar 

  107. I. Pâris, P. Petitjean, É. Aubourg, et al., Astron. and Astrophys. 563, id. A54 (2014).

  108. I. Pâris, P. Petitjean, Ė. Aubourg, et al., Astron. and Astrophys. 613, id. A51 (2018).

  109. G. Paturel, C. Petit, P. Prugniel, et al., Astron. and Astrophys. 412, 45 (2003).

    Article  ADS  Google Scholar 

  110. H. A. Peña-Herazo, F. Massaro, M. Gu, et al., Astron. J. 161 (4), id. 196 (2021).

  111. P. Podigachoski, P. Barthel, M. Haas, et al., Astrophys. J. l 806 (1), article id. L11 (2015).

  112. J. Ramasawmy, J. E. Geach, M. J. Hardcastle, et al., Astron. and Astrophys. 648, id. A14 (2021).

  113. K. E. Randall, A. M. Hopkins, R. P. Norris, and P. G. Edwards, Monthly Notices Royal Astron. Soc. 416 (2), 1135 (2011).

    Article  ADS  Google Scholar 

  114. R. B. Rengelink, Y. Tang, A. G. de Bruyn, et al., Astron. and Astrophys. Suppl. 124, 259 (1997).

    ADS  Google Scholar 

  115. G. T. Richards, R. P. Deo, M. Lacy, et al., Astron. J. 137 (4), 3884 (2009).

    Article  ADS  Google Scholar 

  116. G. T. Richards, A. D. Myers, C. M. Peters, et al., Astrophys. J. Suppl. 219 (2), article id. 39 (2015).

  117. J. L. Richards, W. Max-Moerbeck, V. Pavlidou, et al., Astrophys. J. Suppl. 194, article id. 29 (2011).

  118. R. W. Romani, D. Sowards-Emmerd, L. Greenhill, and P. Michelson, Astrophys. J. l 610 (1), L9 (2004).

    Article  ADS  CAS  Google Scholar 

  119. E. M. Sadler, R. Chhetri, J. Morgan, et al., Monthly Notices Royal Astron. Soc. 483 (1), 1354 (2019).

    Article  ADS  CAS  Google Scholar 

  120. E. M. Sadler, R. Ricci, R. D. Ekers, et al., Monthly Notices Royal Astron. Soc. 371, 898 (2006).

    Article  ADS  Google Scholar 

  121. H. S. Sanghera, D. J. Saikia, E. Luedke, et al., Astron. and Astrophys. 295, 629 (1995).

    ADS  Google Scholar 

  122. T. Sbarrato, G. Ghisellini, G. Tagliaferri, et al., Monthly Notices Royal Astron. Soc. 446 (3), 2483 (2015).

    Article  ADS  CAS  Google Scholar 

  123. R. O. Sexton, N. J. Secrest, M. C. Johnson, and B. N. Dorland, Astrophys. J. Suppl. 260 (2), id. 33 (2017).

  124. N. Seymour, D. Stern, C. De Breuck, et al., Astrophys. J. Suppl. 171, 353 (2007).

    Article  Google Scholar 

  125. V. Singh, A. Beelen, Y. Wadadekar, et al., Astron. and Astrophys. 569, id. A52 (2014).

  126. V. Smolčić, P. Ciliegi, V. Jelić, et al., Monthly Notices Royal Astron. Soc. 443 (3), 2590 (2014).

    Article  ADS  Google Scholar 

  127. I. A. G. Snellen, M. D. Lehnert, M. N. Bremer, and R. T. Schilizzi, Monthly Notices Royal Astron. Soc. 337, 981 (2002).

    Article  ADS  Google Scholar 

  128. I. A. G. Snellen, R. T. Schilizzi, A. G. de Bruyn, et al., Astron. and Astrophys. Suppl. 131, 435 (1998).

    ADS  Google Scholar 

  129. D. I. Solovyov and O. V. Verkhodanov, Astronomy Letters 40, 606 (2014a).

    Article  ADS  Google Scholar 

  130. D. I. Solovyov and O. V. Verkhodanov, Astronomy Reports 58, 506 (2014b).

    Article  ADS  Google Scholar 

  131. Y. Sotnikova, A. Mikhailov, T. Mufakharov, et al., Monthly Notices Royal Astron. Soc. 508 (2), 2798 (2021).

    Article  ADS  Google Scholar 

  132. Y. V. Sotnikova, T. V. Mufakharov, E. K. Majorova, et al., Astrophysical Bulletin 74 (4), 348 (2019).

    Article  ADS  Google Scholar 

  133. J. Souchay, A. H. Andrei, C. Barache, et al., Astron. and Astrophys. 537, id. A99 (2012).

  134. J. Souchay, A. H. Andrei, C. Barache, et al., Astron. and Astrophys. 583, id. A75 (2015).

  135. C. Spingola, D. Dallacasa, S. Belladitta, et al., Astron. and Astrophys. 643, id. L12 (2020).

  136. H. Spinrad, S. Djorgovski, J. Marr, and L. Aguilar, Publ. Astron. Soc. Pacific 97, 932 (1985).

    Article  ADS  CAS  Google Scholar 

  137. T. A. T. Spoelstra, A. R. Patnaik, and Gopal-Krishna, Astron. and Astrophys. 152, 38 (1985).

    ADS  Google Scholar 

  138. D. Stern, R. J. Assef, D. J. Benford, et al., Astrophys. J. 753 (1), article id. 30 (2012).

  139. D. Stern, A. Dey, H. Spinrad, et al., Astron. J. 171 (3), 1122 (1999).

    Article  ADS  Google Scholar 

  140. D. Stern, P. Eisenhardt, V. Gorjian, et al., Astrophys. J. 631 (1), 163 (2005).

    Article  ADS  CAS  Google Scholar 

  141. C. Tan, R. Xue, L.-M. Du, et al., Astrophys. J. Suppl. 248 (2), 27 (2001).

    Article  ADS  Google Scholar 

  142. A. G. G. M. Tielens, G. K. Miley, and A. G. Willis, Astron. and Astrophys. Suppl. 35, 153 (1979).

    ADS  Google Scholar 

  143. M. Tornikoski, M. Lainela, and E. Valtaoja, Astron. J. 120, 2278 (2000).

    Article  ADS  Google Scholar 

  144. S. A. Trushkin, Bull. Spec. Astrophys. Obs. 55, 90 (2003).

    ADS  Google Scholar 

  145. M. Tucci, J. A. Rubiño-Martin, R. Rebolo, et al., Monthly Notices Royal Astron. Soc. 386, 1729 (2008).

    Article  ADS  CAS  Google Scholar 

  146. M. Türler, T. J. L. Courvoisier, and S. Paltani, Astron. and Astrophys. 349, 45 (1999).

    ADS  Google Scholar 

  147. W. van Breugel, C. De Breuck, S. A. Stanford, et al., Astrophys. J. 518 (2), L61 (1999).

    Article  ADS  CAS  Google Scholar 

  148. O. V. Verkhodanov, Astronomy Reports 38, 307 (1994).

    ADS  Google Scholar 

  149. O. V. Verkhodanov, in Proc. 27th Radio Astronomical Conf. on Problems of Modern Radio Astronomy (Institute of Applied Astronomy of RAS, St.-Petersburg, 1997), Vol. 1, p. 322 [in Russian].

  150. O. V. Verkhodanov, H. Andernach, and N. V. Verkhodanova, Bull. Spec. Astrophys. Obs. 29, 53 (2000a).

    Google Scholar 

  151. O. V. Verkhodanov, V. H. Chavushyan, R. Mújica, et al., Astronomy Reports 47 (2), 119 (2003).

    Article  ADS  CAS  Google Scholar 

  152. O. V. Verkhodanov, M. L. Khabibullina, M. Singh, et al., in Proc. Intern. Conf. on Problems of Practical Cosmology, St. Petersburg, Russia, 2008, Ed. by Yu. Baryshev, I. N. Taganov, and P. Teerikorpi (Russian Geographical Society, St. Petersburg, 2008), p. 247.

  153. O. V. Verkhodanov, A. I. Kopylov, Y. N. Parijskij, et al., Bull. Spec. Astrophys. Obs. 48, 41 (1999).

    ADS  Google Scholar 

  154. O. V. Verkhodanov, D. D. Kozlova, and Y. V. Sotnikova, Astrophysical Bulletin 73 (4), 393 (2018).

    Article  ADS  Google Scholar 

  155. O. V. Verkhodanov, A. I. Opylov, O. P. Zhelenkova, et al., Astronomical and Astrophysical Transactions 19, 663 (2000b).

    Article  ADS  Google Scholar 

  156. O. V. Verkhodanov and Y. Parijskij, Radio galaxies and cosmology (FizMatLit, Moscow, 2009) [in Russian].

  157. O. V. Verkhodanov, Y. N. Parijskij, N. S. Soboleva, et al., Bull. Spec. Astrophys. Obs. 52, 3 (2001).

    Google Scholar 

  158. O. V. Verkhodanov and S. A. Trushkin, Bull. Spec. Astrophys. Obs. 50, 115 (2000).

    ADS  Google Scholar 

  159. O. V. Verkhodanov, S. A. Trushkin, H. Andernach, and V. N. Chernenkov, Bull. Spec. Astrophys. Obs. 58, 118 (2005).

    ADS  Google Scholar 

  160. O. V. Verkhodanov, S. A. Trushkin, and V. N. Chernenkov, Baltic Astronomy 6, 275 (1997).

    ADS  Google Scholar 

  161. O. V. Verkhodanov and N. V. Verkhodanova, Astronomy Reports 483, 417 (1999).

    ADS  Google Scholar 

  162. O. V. Verkhodanov, N. V. Verkhodanova, and H. Andernach, Bull. Spec. Astrophys. Obs. 64 (1), 72 (2009).

    Article  Google Scholar 

  163. M. P. Véron-Cetty and P. Véron, Astron. and Astrophys. 412, 399 (2003).

    Article  ADS  Google Scholar 

  164. G. J. White, B. Hatsukade, C. Pearson, et al., Monthly Notices Royal Astron. Soc. 427 (3), 1830 (2012).

    Article  ADS  Google Scholar 

  165. A. E. Wright, R. M. Wark, E. Troup, et al., Monthly Notices Royal Astron. Soc. 251, 330 (1991).

    Article  ADS  Google Scholar 

  166. E. L. Wright, P. R. M. Eisenhardt, A. K. Mainzer, et al., Astron. J. 140 (6), 1868 (2010).

    Article  ADS  Google Scholar 

  167. J. M. Wrobel, A. R. Patnaik, I. W. A. Browne, and P. N. Wilkinson, Bull. Amer. Astron. Soc. , 30, 1308.

  168. D. Wylezalek, J. Vernet, C. De Breuck, et al., Astrophys. J. 786 (1), article id. 17 (2014).

  169. S. Yao, X.-B. Wu, Y. L. Ai, et al., Astrophys. J. Suppl. 240 (1), article id. 6 (2019).

  170. M. Zhou and M. Gu, Astrophys. J. 893 (1), id. 39 (2020).

Download references

ACKNOWLEDGMENTS

A part of the observed data was obtained with the RATAN-600 scientific facility. Observations with the SAO RAS telescopes are supported by the Ministry of Science and Higher Education of the Russian Federation. The renovation of telescope equipment is currently provided within the national project ‘‘Science and Universities.’’ This research has made use of the NASA/IPAC Extragalactic Database (NED), which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration; the CATS data base, available on the Special Astrophysical Observatory website.

Funding

The work was performed as part of the SAO RAS government contract approved by the Ministry of Science and Higher Education of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Khabibullina.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khabibullina, M.L., Mikhailov, A.G., Sotnikova, Y.V. et al. Radio Properties of High-Redshift Galaxies at \(\boldsymbol{z\geq 1}\). Astrophys. Bull. 78, 443–463 (2023). https://doi.org/10.1134/S1990341323700190

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990341323700190

Keywords:

Navigation