Skip to main content
Log in

Histopathological analysis of the wall enhancement of the spinal dural arteriovenous fistulae’s draining veins

  • Original article
  • Published:
Acta Neurologica Belgica Aims and scope Submit manuscript

Abstract

Objective

The mechanism behind SDAVF is still unclear. We discovered that the vessel wall of the SDAVF-DV occasionally showed enhancement in MRI, and this study assessed the relationship between the enhancement of the draining vein’s wall and its histology.

Methods

For histopathologic analysis, 16 draining vein samples from 16 patients with SDAVF were included, 3 normal arteries and 3 normal veins were chosen as comparison. We assessed the imaging and microscopic characteristics of the draining veins in SDAVF patients. The former included the presence of significant enhancement of the wall of the draining vein in MRI, and the latter included the adherence, aggregation, infiltration of pro-inflammatory factors and inflammatory cells. Immuno-histochemical staining was performed using IL-1β, IL-8, TGF-β as well as MPO and MMP-9, and positive results were counted. Multiple logistic regression analysis was used to determine whether the infiltration of inflammatory cells was connected to vessel wall enhancement in the SDAVF-DV.

Results

Infiltration of inflammatory cells was significantly higher in SDAVF-DV compared to normal vessels, 7 out of 16 patients significantly had enhancement of the vessel wall of SDAVF-DV, and logistic regression analysis showed that samples with more infiltration of inflammatory cells were more likely to show enhancement of the SDAVF-DV walls.

Conclusion

There was considerable inflammatory cells infiltration in SDAVF-DV, and this may explain why their vessel wall had such a significant enhancement in MRI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and materials

The datasets generated or analyzed during the study are included in this published article and its supplement.

References

  1. Kendall BE, Logue V (1977) Spinal epidural angiomatous malformations draining into intrathecal veins. Neuroradiology 13(4):181–189

    Article  CAS  PubMed  Google Scholar 

  2. Merland JJ, Riche MC, Chiras J (1980) Intraspinal extramedullary arteriovenous fistulae draining into the medullary veins. J Neuroradiol 7(4):271–320

    CAS  PubMed  Google Scholar 

  3. Marcus J, Schwarz J, Singh I et al (2013) Spinal dural arteriovenous fistulas: a review. Curr Atheroscler Rep 15(7):335

    Article  PubMed  Google Scholar 

  4. Jellema K, Canta L, Tijssen C et al (2003) Spinal dural arteriovenous fistulas: clinical features in 80 patients. J Neurol Neurosurg Psychiatr 74(10):1438–1440

    Article  CAS  Google Scholar 

  5. Behrens S, Thron A (1999) Long-term follow-up and outcome in patients treated for spinal dural arteriovenous fistula. J Neurol 246(3):181–185

    Article  CAS  PubMed  Google Scholar 

  6. Song JK, Vinuela F, Gobin YP et al (2001) Surgical and endovascular treatment of spinal dural arteriovenous fistulas: long-term disability assessment and prognostic factors. J Neurosurg 94(2 Suppl):199–204

    CAS  PubMed  Google Scholar 

  7. Wakao N, Imagama S, Ito Z et al (2012) Clinical outcome of treatments for spinal dural arteriovenous fistulas: results of multivariate analysis and review of the literature. Spine 37(6):482–488

    Article  PubMed  Google Scholar 

  8. Nagata S, Morioka T, Natori Y et al (2006) Factors that affect the surgical outcomes of spinal dural arteriovenous fistulas. Surg Neurol 65(6):563–568

    Article  PubMed  Google Scholar 

  9. Krings T, Lasjaunias P, Hans F et al (2007) Imaging in spinal vascular disease. Neuroimaging Clin N Am 17(1):57–72

    Article  PubMed  Google Scholar 

  10. Gilbertson J, Miller G, Goldman M et al (1995) Spinal dural arteriovenous fistulas: MR and myelographic findings. AJNR Am J Neuroradiol 16(10):2049–2057

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Hurst R, Kenyon L, Lavi E et al (1995) Spinal dural arteriovenous fistula: the pathology of venous hypertensive myelopathy. Neurology 45(7):1309–1313

    Article  CAS  PubMed  Google Scholar 

  12. Chyatte D, Bruno G, Desai S et al (1999) Inflammation and intracranial aneurysms. Neurosurgery 45(5):1137–1146

    Article  CAS  PubMed  Google Scholar 

  13. Chen Y, Pawlikowska L, Yao JS et al (2006) Interleukin-6 involvement in brain arteriovenous malformations. Ann Neurol 59(1):72–80

    Article  CAS  PubMed  Google Scholar 

  14. Hashimoto T, Meng H, Young WL (2006) Intracranial aneurysms: links among inflammation, hemodynamics and vascular remodeling. Neurol Res 28(4):372–380

    Article  PubMed  PubMed Central  Google Scholar 

  15. Chen Y, Zhu W, Bollen AW et al (2008) Evidence of inflammatory cell involvement in brain arteriovenous malformations. Neurosurgery 62(6):1340–1350

    Article  PubMed  Google Scholar 

  16. Semenza GL (2007) Vasculogenesis, angiogenesis, and arteriogenesis: mechanisms of blood vessel formation and remodeling. J Cell Biochem 102(4):840–847

    Article  CAS  PubMed  Google Scholar 

  17. Takai K, Komori T, Taniguchi M (2015) Microvascular anatomy of spinal dural arteriovenous fistulas: arteriovenous connections and their relationships with the dura mater. J Neurosurg Spine 23(4):526–533

    Article  PubMed  Google Scholar 

  18. Liu P, Shi Y, Li S et al (2021) Pathology and protein changes of the spinal dural arteriovenous fistula arterial draining vein under sustained high vascular pressure. Front Neurol 12:713355

    Article  PubMed  PubMed Central  Google Scholar 

  19. Davies MG, Hagen PO (1995) Pathophysiology of vein graft failure: a review. Eur J Vasc Endovasc Surg 9(1):7–18

    Article  PubMed  Google Scholar 

  20. Abeles D, Kwei S, Stavrakis G et al (2006) Gene expression changes evoked in a venous segment exposed to arterial flow. J Vasc Surg 44(4):863–870

    Article  PubMed  Google Scholar 

  21. Shi J, Yang Y, Cheng A et al (2020) Metabolism of vascular smooth muscle cells in vascular diseases. Am J Physiol Heart Circ Physiol 319(3):H613–H631

    Article  CAS  PubMed  Google Scholar 

  22. Takami T, Ohata K, Nishio A et al (2006) Histological characteristics of arterialized medullary vein in spinal dural arteriovenous fistulas related with clinical findings: report of five cases. Neurol Ind 54(2):202–204

    Google Scholar 

  23. Cavanagh SP, Gough MJ, Homer-Vanniasinkam S (1998) The role of the neutrophil in ischaemia-reperfusion injury: potential therapeutic interventions. Cardiovasc sur 6(2):112–118

    Article  CAS  Google Scholar 

  24. Chou WH, Choi DS, Zhang H et al (2004) Neutrophil protein kinase Cdelta as a mediator of stroke-reperfusion injury. J Clin Investig 114(1):49–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shenkar R, Elliott JP, Diener K et al (2003) Differential gene expression in human cerebrovascular malformations. Neurosurgery 52(2):465–477

    Article  PubMed  Google Scholar 

  26. Hashimoto T, Lawton MT, Wen G et al (2004) Gene microarray analysis of human brain arteriovenous malformations. Neurosurgery 54(2):410–423

    Article  PubMed  Google Scholar 

  27. Chen Y, Fan Y, Poon KY et al (2006) MMP-9 expression is associated with leukocytic but not endothelial markers in brain arteriovenous malformations. Front Biosci 11:3121–28

    Article  CAS  PubMed  Google Scholar 

  28. Zhong W, Su W, Li T et al (2021) Aneurysm wall enhancement in unruptured intracranial aneurysms: a histopathological evaluation. J Am Heart Assoc 10(2):e018633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Klebanoff SJ (1999) Myeloperoxidase. Proc Assoc Am Phys 111(5):383–389

    Article  CAS  PubMed  Google Scholar 

  30. Klebanoff SJ (2005) Myeloperoxidase: friend and foe. J Leukoc Biol 77(5):598–625

    Article  CAS  PubMed  Google Scholar 

  31. Anatoliotakis N, Deftereos S, Bouras G et al (2013) Myeloperoxidase: expressing inflammation and oxidative stress in cardiovascular disease. Curr Top Med Chem 13(2):115–138

    Article  CAS  PubMed  Google Scholar 

  32. Tiruppathi C, Naqvi T, Wu Y et al (2004) Albumin mediates the transcytosis of myeloperoxidase by means of caveolae in endothelial cells. Proc Natl Acad Sci USA 101(20):7699–7704

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pugin J, Widmer MC, Kossodo S et al (1999) Human neutrophils secrete gelatinase B in vitro and in vivo in response to endotoxin and proinflammatory mediators. Am J Respir Cell Mol Biol 20(3):458–464

    Article  CAS  PubMed  Google Scholar 

  34. Opdenakker G, van den Steen PE, Dubois B et al (2001) Gelatinase B functions as regulator and effector in leukocyte biology. J Leukoc Biol 69(6):851–859

    Article  CAS  PubMed  Google Scholar 

  35. Cebral J, Ollikainen E, Chung BJ et al (2017) Flow conditions in the intracranial aneurysm lumen are associated with inflammation and degenerative changes of the aneurysm wall. Am J Neuroradiol 38(1):119–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

None.

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

XH: writing—original draft editing. YD, MH, MX: writing—review & editing. HR: conceptualization. TZ: supervision.

Corresponding author

Correspondence to Tao Zhu.

Ethics declarations

Conflicts of interest 

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, X., Diao, Y., Hao, Z. et al. Histopathological analysis of the wall enhancement of the spinal dural arteriovenous fistulae’s draining veins. Acta Neurol Belg (2024). https://doi.org/10.1007/s13760-024-02483-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13760-024-02483-3

Keywords

Navigation