Skip to main content
Log in

Macrophage activation contributes to diabetic retinopathy

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Diabetic retinopathy (DR) is recognized as a neurovascular complication of diabetes, and emerging evidence underscores the pivotal role of inflammation in its pathophysiology. Macrophage activation is increasingly acknowledged as a key contributor to the onset and progression of DR. Different populations of macrophages originating from distinct sources contribute to DR-associated inflammation. Retinal macrophages can be broadly categorized into two main groups based on their origin: intrinsic macrophages situated within the retina and vitreoretinal interface and macrophages derived from infiltrating monocytes. The former comprises microglia (MG), perivascular macrophages, and macrophage-like hyalocytes. Retinal MG, as the principal population of tissue-resident population of mononuclear phagocytes, exhibits high heterogeneity and plasticity while serving as a crucial connector between retinal capillaries and synapses. This makes MG actively involved in the pathological processes across various stages of DR. Activated hyalocytes also contribute to the pathological progression of advanced DR. Additionally, recruited monocytes, displaying rapid turnover in circulation, augment the population of retinal macrophages during DR pathogenesis, exerting pathogenic or protective effect based on different subtypes. In this review, we examine novel perspectives on macrophage biology based on recent studies elucidating the diversity of macrophage identity and function, as well as the mechanisms influencing macrophage behavior. These insights may pave the way for innovative therapeutic strategies in the management of DR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Availability of data and material

Not applicable.

References

  1. Nentwich MM, Ulbig MW (2015) Diabetic retinopathy - ocular complications of diabetes mellitus. World J Diabetes 6:489–499. https://doi.org/10.4239/wjd.v6.i3.489

    Article  PubMed  PubMed Central  Google Scholar 

  2. Rajesh A, Droho S, Lavine JA (2022) Macrophages in close proximity to the vitreoretinal interface are potential biomarkers of inflammation during retinal vascular disease. J Neuroinflammation 19:203. https://doi.org/10.1186/s12974-022-02562-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bressler NM, Beaulieu WT, Glassman AR, Blinder KJ, Bressler SB, Jampol LM, Melia M, Wells JA (2018) Persistent macular thickening following intravitreous Aflibercept, Bevacizumab, or Ranibizumab for central-involved diabetic macular edema with vision impairment: a secondary analysis of a randomized clinical trial. JAMA Ophthalmol 136:257–269. https://doi.org/10.1001/jamaophthalmol.2017.6565

    Article  PubMed  PubMed Central  Google Scholar 

  4. Elman MJ, Aiello LP, Beck RW, Bressler NM, Bressler SB, Edwards AR, Ferris FL, Friedman SM, Glassman AR, Miller KM et al (2010) Randomized trial evaluating ranibizumab plus prompt or deferred laser or triamcinolone plus prompt laser for diabetic macular edema. Ophthalmology 117:1064–1077. https://doi.org/10.1016/j.ophtha.2010.02.031

    Article  PubMed  Google Scholar 

  5. Nian S, Lo ACY, Mi Y, Ren K, Yang D (2021) Neurovascular unit in diabetic retinopathy: pathophysiological roles and potential therapeutical targets. Eye Vis (Lond) 8:15. https://doi.org/10.1186/s40662-021-00239-1

    Article  PubMed  Google Scholar 

  6. Ibrahim AS, El-Remessy AB, Matragoon S, Zhang W, Patel Y, Khan S, Al-Gayyar MM, El-Shishtawy MM, Liou GI (2011) Retinal microglial activation and inflammation induced by amadori-glycated albumin in a rat model of diabetes. Diabetes 60:1122–1133. https://doi.org/10.2337/db10-1160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gardner TW, Davila JR (2017) The neurovascular unit and the pathophysiologic basis of diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol 255:1–6. https://doi.org/10.1007/s00417-016-3548-y

    Article  PubMed  Google Scholar 

  8. Zong H, Ward M, Stitt AW (2011) AGEs, RAGE, and diabetic retinopathy. Curr Diab Rep 11:244–252. https://doi.org/10.1007/s11892-011-0198-7

    Article  PubMed  Google Scholar 

  9. Rübsam A, Parikh S, Fort PE (2018) Role of inflammation in diabetic retinopathy. Int J Mol Sci 19:942. https://doi.org/10.3390/ijms19040942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Abcouwer SF, Gardner TW (2014) Diabetic retinopathy: loss of neuroretinal adaptation to the diabetic metabolic environment. Ann N Y Acad Sci 1311:174–190. https://doi.org/10.1111/nyas.12412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pan WW, Lin F, Fort PE (2021) The innate immune system in diabetic retinopathy. Prog Retin Eye Res 84:100940. https://doi.org/10.1016/j.preteyeres.2021.100940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Obasanmi G, Lois N, Armstrong D, Hombrebueno J, Lynch A, Chen M, Xu H (2023) Peripheral blood mononuclear cells from patients with type 1 diabetes and diabetic retinopathy produce higher levels of IL-17A, IL-10 and IL-6 and lower levels of IFN-γ-a pilot study. Cells 12:467. https://doi.org/10.3390/cells12030467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kovoor E, Chauhan S, Hajrasouliha A (2022) Role of inflammatory cells in pathophysiology and management of diabetic retinopathy. Surv Ophthalmol 67:1563–1573. https://doi.org/10.1016/j.survophthal.2022.07.008

    Article  PubMed  Google Scholar 

  14. Elbeyli A, Kurtul B, Ozcan S, Ozarslan Ozcan D (2022) The diagnostic value of systemic immune-inflammation index in diabetic macular oedema. Clin Exp Optom 105:831–835. https://doi.org/10.1080/08164622.2021.1994337

    Article  PubMed  Google Scholar 

  15. Huang J, Zhou Q (2022) Identification of the relationship between hub genes and immune cell infiltration in vascular endothelial cells of proliferative diabetic retinopathy using bioinformatics methods 2022:7231046. https://doi.org/10.1155/2022/7231046

    Article  CAS  Google Scholar 

  16. Zeng HY, Green WR, Tso MO (2008) Microglial activation in human diabetic retinopathy. Arch Ophthalmol 126:227–232. https://doi.org/10.1001/archophthalmol.2007.65

    Article  PubMed  Google Scholar 

  17. Blot G, Karadayi R, Przegralek L, Sartoris TM, Charles-Messance H, Augustin S, Negrier P, Blond F, Muñiz-Ruvalcaba FP, Rivera-de la Parra D et al (2023) Perilipin 2-positive mononuclear phagocytes accumulate in the diabetic retina and promote PPARγ-dependent vasodegeneration. J Clin Invest 133:e161348. https://doi.org/10.1172/jci161348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mills SA, Jobling AI, Dixon MA, Bui BV, Vessey KA, Phipps JA, Greferath U, Venables G, Wong VHY, Wong CHY et al (2021) Fractalkine-induced microglial vasoregulation occurs within the retina and is altered early in diabetic retinopathy. Proc Natl Acad Sci USA 118:e2112561118. https://doi.org/10.1073/pnas.2112561118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chen M, Luo C, Zhao J, Devarajan G, Xu H (2019) Immune regulation in the aging retina. Prog Retin Eye Res 69:159–172. https://doi.org/10.1016/j.preteyeres.2018.10.003

    Article  CAS  PubMed  Google Scholar 

  20. Altmann C, Schmidt MHH (2018) The role of microglia in diabetic retinopathy: inflammation, microvasculature defects and neurodegeneration. Int J Mol Sci 19:110. https://doi.org/10.3390/ijms19010110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ong JX, Nesper PL, Fawzi AA, Wang JM, Lavine JA (2021) Macrophage-like cell density is increased in proliferative diabetic retinopathy characterized by optical coherence tomography angiography. Invest Ophthalmol Vis Sci 62:2. https://doi.org/10.1167/iovs.62.10.2

    Article  PubMed  PubMed Central  Google Scholar 

  22. Wang X, Zhao L, Zhang J, Fariss RN, Ma W, Kretschmer F, Wang M, Qian HH, Badea TC, Diamond JS et al (2016) Requirement for microglia for the maintenance of synaptic function and integrity in the mature retina. J Neurosci 36:2827–2842. https://doi.org/10.1523/jneurosci.3575-15.2016

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, Mehler MF, Conway SJ, Ng LG, Stanley ER et al (2010) Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330:841–845. https://doi.org/10.1126/science.1194637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Schulz C, Gomez Perdiguero E, Chorro L, Szabo-Rogers H, Cagnard N, Kierdorf K, Prinz M, Wu B, Jacobsen SE, Pollard JW et al (2012) A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 336:86–90. https://doi.org/10.1126/science.1219179

    Article  CAS  PubMed  Google Scholar 

  25. Wolf J, Boneva S, Rosmus DD, Agostini H, Schlunck G, Wieghofer P, Schlecht A, Lange C (2022) In-depth molecular profiling specifies human retinal microglia identity. Front Immunol 13:863158. https://doi.org/10.3389/fimmu.2022.863158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Schafer ST, Mansour AA, Schlachetzki JCM, Pena M, Ghassemzadeh S, Mitchell L, Mar A, Quang D, Stumpf S, Ortiz IS et al (2023) An in vivo neuroimmune organoid model to study human microglia phenotypes. Cell 186:2111–2126. https://doi.org/10.1016/j.cell.2023.04.022

    Article  CAS  PubMed  Google Scholar 

  27. Chen L, Yang P, Kijlstra A (2002) Distribution, markers, and functions of retinal microglia. Ocul Immunol Inflamm 10:27–39. https://doi.org/10.1076/ocii.10.1.27.10328

    Article  PubMed  Google Scholar 

  28. Singaravelu J, Zhao L, Fariss RN, Nork TM, Wong WT (2017) Microglia in the primate macula: specializations in microglial distribution and morphology with retinal position and with aging. Brain Struct Funct 222:2759–2771. https://doi.org/10.1007/s00429-017-1370-x

    Article  PubMed  PubMed Central  Google Scholar 

  29. Li L, Eter N, Heiduschka P (2018) The microglia in healthy and diseased retina. Exp Eye Res 136:116–130. https://doi.org/10.1016/j.exer.2015.04.020

    Article  CAS  Google Scholar 

  30. Silverman SM, Wong WT (2018) Microglia in the retina: roles in development, maturity, and disease. Annu Rev Vis Sci 4:45–77. https://doi.org/10.1146/annurev-vision-091517-034425

    Article  PubMed  Google Scholar 

  31. Lukowski SW, Lo CY, Sharov AA, Nguyen Q, Fang L, Hung SS, Zhu L, Zhang T, Grünert U, Nguyen T (2019) A single-cell transcriptome atlas of the adult human retina. Embo j 38:100811. https://doi.org/10.15252/embj.2018100811

    Article  CAS  Google Scholar 

  32. Lee JE, Liang KJ, Fariss RN, Wong WT (2008) Ex vivo dynamic imaging of retinal microglia using time-lapse confocal microscopy. Invest Ophthalmol Vis Sci 49:4169–4176. https://doi.org/10.1167/iovs.08-2076

    Article  PubMed  Google Scholar 

  33. Zhang Y, Zhao L, Wang X, Ma W, Lazere A, Qian HH, Zhang J, Abu-Asab M, Fariss RN, Roger JE et al (2018) Repopulating retinal microglia restore endogenous organization and function under CX3CL1-CX3CR1 regulation. Sci Adv 4:eaap8492. https://doi.org/10.1126/sciadv.aap8492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang X, Wang T, Lam E, Alvarez D, Sun Y (2023) Ocular vascular diseases: from retinal immune privilege to inflammation. Int J Mol Sci 24:12090. https://doi.org/10.3390/ijms241512090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Taylor AW, Ng TF (2018) Negative regulators that mediate ocular immune privilege. J Leukoc Biol 103:1179–1187. https://doi.org/10.1002/jlb.3mir0817-337r

    Article  CAS  Google Scholar 

  36. Reyes NJ, O’Koren EG, Saban DR (2017) New insights into mononuclear phagocyte biology from the visual system. Nat Rev Immunol 17:322–332. https://doi.org/10.1038/nri.2017.13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cherry JD, Olschowka JA, O’Banion MK (2014) Neuroinflammation and M2 microglia: the good, the bad, and the inflamed. J Neuroinflammation 11:98. https://doi.org/10.1186/1742-2094-11-98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kaur C, Rathnasamy G, Ling EA (2012) Roles of activated microglia in hypoxia induced neuroinflammation in the developing brain and the retina. J Neuroimmune Pharmacol 8:66–78. https://doi.org/10.1007/s11481-012-9347-2

    Article  PubMed  Google Scholar 

  39. Klotzsche-von Ameln A, Sprott D (2022) Harnessing retinal phagocytes to combat pathological neovascularization in ischemic retinopathies? Pflugers Arch 474:575–590. https://doi.org/10.1007/s00424-022-02695-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Su F, Yi H, Xu L, Zhang Z (2015) Fluoxetine and S-citalopram inhibit M1 activation and promote M2 activation of microglia in vitro. Neuroscience 294:60–68. https://doi.org/10.1016/j.neuroscience.2015.02.028

    Article  CAS  PubMed  Google Scholar 

  41. Arroba AI, Alcalde-Estevez E, García-Ramírez M, Cazzoni D, de la Villa P, Sánchez-Fernández EM, Mellet CO, García Fernández JM, Hernández C, Simó R et al (2016) Modulation of microglia polarization dynamics during diabetic retinopathy in db/db mice. Biochim Biophys Acta 1862:1663–1674. https://doi.org/10.1016/j.bbadis.2016.05.024

    Article  CAS  PubMed  Google Scholar 

  42. Martinez FO, Helming L, Gordon S (2009) Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol 27:451–483. https://doi.org/10.1146/annurev.immunol.021908.132532

    Article  CAS  PubMed  Google Scholar 

  43. Zhou YD, Yoshida S, Peng YQ, Kobayashi Y, Zhang LS, Tang LS (2017) Diverse roles of macrophages in intraocular neovascular diseases: a review. Int J Ophthalmol 10:1902–1908

    PubMed  PubMed Central  Google Scholar 

  44. Kinuthia UM, Wolf A, Langmann T (2020) Microglia and inflammatory responses in diabetic retinopathy. Front Immunol 11:564077. https://doi.org/10.3389/fimmu.2020.564077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chen T, Zhu W, Wang C, Dong X, Yu F, Su Y, Huang J, Huo L, Wan P (2022) ALKBH5-mediated mA modification of A20 regulates microglia polarization in diabetic retinopathy. Front Immunol 13:813979. https://doi.org/10.3389/fimmu.2022.813979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lampron A, Elali A, Rivest S (2013) Innate immunity in the CNS: redefining the relationship between the CNS and Its environment. Neuron 78:214–232. https://doi.org/10.1016/j.neuron.2013.04.005

    Article  CAS  PubMed  Google Scholar 

  47. Wang Z, Koenig AL, Lavine KJ, Apte RS (2019) Macrophage plasticity and function in the eye and heart. Trends Immunol 40:825–841. https://doi.org/10.1016/j.it.2019.07.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Graeber MB, Li W, Rodriguez ML (2011) Role of microglia in CNS inflammation. FEBS Lett 585:3798–3805. https://doi.org/10.1016/j.febslet.2011.08.033

    Article  CAS  PubMed  Google Scholar 

  49. Stratoulias V, Venero JL, Tremblay M, Joseph B (2019) Microglial subtypes: diversity within the microglial community. Embo J 38:e101997. https://doi.org/10.15252/embj.2019101997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. O’Koren EG, Mathew R, Saban DR (2016) Fate mapping reveals that microglia and recruited monocyte-derived macrophages are definitively distinguishable by phenotype in the retina. Sci Rep 6:20636. https://doi.org/10.1038/srep20636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rosmus DD, Wieghofer P (2022) Guardians of the eye: new tales about retinal microglia and other ocular macrophages. Neural Regen Res 17:1275–1277. https://doi.org/10.4103/1673-5374.327335

    Article  CAS  PubMed  Google Scholar 

  52. Wieghofer P, Hagemeyer N, Sankowski R, Schlecht A, Staszewski O, Amann L, Gruber M, Koch J, Hausmann A, Zhang P et al (2021) Mapping the origin and fate of myeloid cells in distinct compartments of the eye by single-cell profiling. Embo j 40:e105123. https://doi.org/10.15252/embj.2020105123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Li Q, Cheng Z, Zhou L, Darmanis S, Neff NF, Okamoto J, Gulati G, Bennett ML, Sun LO, Clarke LE et al (2019) Developmental heterogeneity of microglia and brain myeloid cells revealed by deep single-cell RNA sequencing. Neuron 101:207–223. https://doi.org/10.1016/j.neuron.2018.12.006

    Article  CAS  PubMed  Google Scholar 

  54. Hammond TR, Dufort C, Dissing-Olesen L, Giera S, Young A, Wysoker A, Walker AJ, Gergits F, Segel M, Nemesh J et al (2019) Single-cell RNA sequencing of microglia throughout the mouse lifespan and in the injured brain reveals complex cell-state changes. Immunity 50:253–271. https://doi.org/10.1016/j.immuni.2018.11.004

    Article  CAS  PubMed  Google Scholar 

  55. O’Koren E, Yu C, Klingeborn M, Wong A, Prigge C, Mathew R, Kalnitsky J, Msallam R, Silvin A, Kay J et al (2019) Microglial function is distinct in different anatomical locations during retinal homeostasis and degeneration. Immunity 50:723–737. https://doi.org/10.1016/j.immuni.2019.02.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hu Z, Mao X, Chen M, Wu X, Zhu T, Liu Y, Zhang Z, Fan W, Xie P, Yuan S et al (2022) Single cell transcriptomics reveals novel role of microglia in fibrovascular membrane of proliferative diabetic retinopathy. Diabetes 71:762–773. https://doi.org/10.2337/db21-0551

    Article  CAS  PubMed  Google Scholar 

  57. Corano Scheri K, Lavine JA, Tedeschi T, Thomson BR, Fawzi AA (2023) Single-cell transcriptomics analysis of proliferative diabetic retinopathy fibrovascular membranes reveals AEBP1 as fibrogenesis modulator. JCI Insight 17:84. https://doi.org/10.1172/jci.insight.172062

    Article  Google Scholar 

  58. Gosselin D (2020) Epigenomic and transcriptional determinants of microglial cell identity. Glia 68(8):1643–1654. https://doi.org/10.1002/glia.23787. Epub 2020/01/30.

    Article  PubMed  Google Scholar 

  59. Chen Y, Colonna M (2021) Microglia in Alzheimer’s disease at single-cell level. Are there common patterns in humans and mice? J Exp Med 218:e20202717. https://doi.org/10.1084/jem.20202717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Jordão MJC, Sankowski R, Brendecke SM, Sagar Locatelli G, Tai YH, Tay TL, Schramm E, Armbruster S, Hagemeyer N et al (2019) Single-cell profiling identifies myeloid cell subsets with distinct fates during neuroinflammation. Science 363:eaat7554. https://doi.org/10.1126/science.aat7554

    Article  CAS  PubMed  Google Scholar 

  61. Masuda T, Sankowski R, Staszewski O, Böttcher C, Amann L, Sagar Scheiwe C, Nessler S, Kunz P, van Loo G et al (2019) Spatial and temporal heterogeneity of mouse and human microglia at single-cell resolution. Nature 566:388–392. https://doi.org/10.1038/s41586-019-0924-x

    Article  CAS  PubMed  Google Scholar 

  62. Krasemann S, Madore C, Cialic R, Baufeld C, Calcagno N, El Fatimy R, Beckers L, O’Loughlin E, Xu Y, Fanek Z et al (2017) The TREM2-APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases. Immunity 47:566–581. https://doi.org/10.1016/j.immuni.2017.08.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zrzavy T, Hametner S, Wimmer I, Butovsky O, Weiner HL, Lassmann H (2017) Loss of ‘homeostatic’ microglia and patterns of their activation in active multiple sclerosis. Brain 140:1900–1913. https://doi.org/10.1093/brain/awx113

    Article  PubMed  PubMed Central  Google Scholar 

  64. DePaula-Silva AB, Gorbea C, Doty DJ, Libbey JE, Sanchez JMS, Hanak TJ, Cazalla D, Fujinami RS (2019) Differential transcriptional profiles identify microglial- and macrophage-specific gene markers expressed during virus-induced neuroinflammation. J Neuroinflammation 16:152. eng. https://doi.org/10.1186/s12974-019-1545-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Masuda T, Amann L, Sankowski R, Staszewski O, Lenz M, d´ Errico P, Snaidero N, Costa Jordão MJ, Böttcher C, Kierdorf K, Jung S et al (2020) Novel Hexb-based tools for studying microglia in the CNS. Nat Immunol 21:802–815. https://doi.org/10.1038/s41590-020-0707-4

    Article  CAS  PubMed  Google Scholar 

  66. Lier J, Streit WJ, Bechmann I (2021) Beyond activation: characterizing microglial functional phenotypes. Cells 10:2236. https://doi.org/10.3390/cells10092236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Keren-Shaul H, Spinrad A, Weiner A, Matcovitch-Natan O, Dvir-Szternfeld R, Ulland TK, David E, Baruch K, Lara-Astaiso D, Toth B et al (2017) A unique microglia type associated with restricting development of Alzheimer’s disease. Cell 169:1276–1290. https://doi.org/10.1016/j.cell.2017.05.018

    Article  CAS  PubMed  Google Scholar 

  68. Hou J, Chen Y, Grajales-Reyes G, Colonna M (2022) TREM2 dependent and independent functions of microglia in Alzheimer’s disease. Mol Neurodegener 17:84. https://doi.org/10.1186/s13024-022-00588-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Liu Z, Shi H, Xu J, Yang Q, Ma Q, Mao X, Xu Z, Zhou Y, Da Q, Cai Y et al (2022) Single-cell transcriptome analyses reveal microglia types associated with proliferative retinopathy. JCI Insight 7:e160940. https://doi.org/10.1172/jci.insight.160940

    Article  PubMed  PubMed Central  Google Scholar 

  70. Li X, Yu Z, Li H, Yuan Y, Gao X, Kuang H (2021) Retinal microglia polarization in diabetic retinopathy. Vis Neurosci 38:E006. https://doi.org/10.1017/s0952523821000031

    Article  PubMed  Google Scholar 

  71. Aires ID, Madeira MH, Boia R, Rodrigues-Neves AC, Martins JM, Ambrósio AF, Santiago AR (2019) Intravitreal injection of adenosine A(2A) receptor antagonist reduces neuroinflammation, vascular leakage and cell death in the retina of diabetic mice. Sci Rep 9:17207. https://doi.org/10.1038/s41598-019-53627-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Scott IU, Jackson GR, Quillen DA, Klein R, Liao J, Gardner TW (2014) Effect of doxycycline vs placebo on retinal function and diabetic retinopathy progression in mild to moderate nonproliferative diabetic retinopathy: a randomized proof-of-concept clinical trial. JAMA Ophthalmol 132:1137–1142. https://doi.org/10.1001/jamaophthalmol.2014.1422

    Article  CAS  PubMed  Google Scholar 

  73. Church KA, Rodriguez D, Mendiola AS, Vanegas D, Gutierrez IL, Tamayo I, Amadu A, Velazquez P, Cardona SM, Gyoneva S et al (2023) Pharmacological depletion of microglia alleviates neuronal and vascular damage in the diabetic CX3CR1-WT retina but not in CX3CR1-KO or hCX3CR1(I249/M280)-expressing retina. Front Immunol 14:1130735. https://doi.org/10.3389/fimmu.2023.1130735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wang SK, Lapan SW, Hong CM, Krause TB, Cepko CL (2020) In situ detection of adeno-associated viral vector genomes with SABER-FISH. Mol Ther Methods Clin Dev 19:376–386. https://doi.org/10.1016/j.omtm.2020.10.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Rosario AM, Cruz PE, Ceballos-Diaz C, Strickland MR, Siemienski Z, Pardo M, Schob KL, Li A, Aslanidi GV, Srivastava A et al (2016) Microglia-specific targeting by novel capsid-modified AAV6 vectors. Mol Ther Methods Clin Dev 3:16026. https://doi.org/10.1038/mtm.2016.26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Maes ME, Colombo G, Schulz R, Siegert S (2019) Targeting microglia with lentivirus and AAV: recent advances and remaining challenges. Neurosci Lett 707:134310. https://doi.org/10.1016/j.neulet.2019.134310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Xiong W, Wu DM, Xue Y, Wang SK, Chung MJ, Ji X, Rana P, Zhao SR, Mai S, Cepko CL (2019) AAV cis-regulatory sequences are correlated with ocular toxicity. Proc Natl Acad Sci U S A 116:5785–5794. https://doi.org/10.1073/pnas.1821000116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Chan YK, Wang SK, Chu CJ, Copland DA, Letizia AJ, Costa Verdera H, Chiang JJ, Sethi M, Wang MK, Neidermyer WJ et al (2021) Engineering adeno-associated viral vectors to evade innate immune and inflammatory responses. Sci Transl Med 13:eabd3438. https://doi.org/10.1126/scitranslmed.abd3438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Shin TH, Lee DY, Manavalan B, Basith S, Na YC, Yoon C, Lee HS, Paik MJ, Lee G (2021) Silica-coated magnetic nanoparticles activate microglia and induce neurotoxic D-serine secretion. Part Fibre Toxicol 18:30. https://doi.org/10.1186/s12989-021-00420-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kaneko H, Nishiguchi KM, Nakamura M, Kachi S, Terasaki H (2008) Characteristics of bone marrow-derived microglia in the normal and injured retina. Invest Ophthalmol Vis Sci 49:4162–4168. https://doi.org/10.1167/iovs.08-1738

    Article  PubMed  Google Scholar 

  81. Kataoka K, Nishiguchi KM, Kaneko H, van Rooijen N, Kachi S, Terasaki H (2010) The roles of vitreal macrophages and circulating leukocytes in retinal neovascularization. Invest Ophthalmol Vis Sci 52:1431–1438. https://doi.org/10.1167/iovs.10-5798

    Article  CAS  Google Scholar 

  82. Chinnery HR, McMenamin PG, Dando SJ (2017) Macrophage physiology in the eye. Pflugers Arch 469:501–515. https://doi.org/10.1007/s00424-017-1947-5

    Article  CAS  PubMed  Google Scholar 

  83. McLeod DS, Lefer DJ, Merges C, Lutty GA (1995) Enhanced expression of intracellular adhesion molecule-1 and P-selectin in the diabetic human retina and choroid. Am J Pathol 147(3):642–53. PMID 7545873

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Valle A, Giamporcaro GM, Scavini M, Stabilini A, Grogan P, Bianconi E, Sebastiani G, Masini M, Maugeri N, Porretti L et al (2013) Reduction of circulating neutrophils precedes and accompanies type 1 diabetes. Diabetes 62:2072–2077. https://doi.org/10.2337/db12-1345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Tang L, Xu GT, Zhang JF (2022) Inflammation in diabetic retinopathy: possible roles in pathogenesis and potential implications for therapy. Neural Regen Res 18:976–982. https://doi.org/10.4103/1673-5374.355743

    Article  CAS  PubMed Central  Google Scholar 

  86. Geissmann F, Jung S, Littman DR (2003) Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 19:71–82. https://doi.org/10.1016/s1074-7613(03)00174-2

    Article  CAS  PubMed  Google Scholar 

  87. Hazra S, Jarajapu YP, Stepps V, Caballero S, Thinschmidt JS, Sautina L, Bengtsson N, Licalzi S, Dominguez J, Kern TS et al (2013) Long-term type 1 diabetes influences haematopoietic stem cells by reducing vascular repair potential and increasing inflammatory monocyte generation in a murine model. Diabetologia 56:644–53. https://doi.org/10.1007/s00125-012-2781-0

    Article  CAS  PubMed  Google Scholar 

  88. Saadane A, Veenstra AA, Minns MS, Tang J, Du Y, Abubakr Elghazali F, Lessieur EM, Pearlman E, Kern TS (2023) CCR2-positive monocytes contribute to the pathogenesis of early diabetic retinopathy in mice. Diabetologia 66:590–602. https://doi.org/10.1007/s00125-022-05860-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ma W, Zhang Y, Gao C, Fariss RN, Tam J, Wong WT (2017) Monocyte infiltration and proliferation reestablish myeloid cell homeostasis in the mouse retina following retinal pigment epithelial cell injury. Sci Rep 7:8433. https://doi.org/10.1038/s41598-017-08702-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Tecilazich F, Phan TA, Simeoni F, Scotti GM, Dagher Z, Lorenzi M (2020) Patrolling monocytes are recruited and activated by diabetes to protect retinal microvessels. Diabetes 69:2709–2719. https://doi.org/10.2337/db19-1043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Beli E, Dominguez J, Hu P, Thinschmidt J, Caballero S, Li Calzi S, Luo D, Shanmugam S, Salazar T, Duan Y et al (2016) CX3CR1 deficiency accelerates the development of retinopathy in a rodent model of type 1 diabetes. J Mol Med (Berl) 94:1255–1265. https://doi.org/10.1007/s00109-016-1433-0

    Article  CAS  PubMed  Google Scholar 

  92. Castanos MV, Zhou DB, Linderman RE, Allison R, Milman T, Carroll J, Migacz J, Rosen RB, Chui TYP (2020) Imaging of macrophage-like cells in living human retina using clinical OCT. Invest Ophthalmol Vis Sci 61:48. https://doi.org/10.1167/iovs.61.6.48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Vagaja NN, Chinnery HR, Binz N, Kezic JM, Rakoczy EP, McMenamin PG (2012) Changes in murine hyalocytes are valuable early indicators of ocular disease. Invest Ophthalmol Vis Sci 53:1445–1451. https://doi.org/10.1167/iovs.11-8601

    Article  PubMed  Google Scholar 

  94. Lazarus HS, Hageman GS (1994) In situ characterization of the human hyalocyte. Arch Ophthalmol 112:1356–1362. https://doi.org/10.1001/archopht.1994.01090220106031

    Article  CAS  PubMed  Google Scholar 

  95. Zhu M, Penfold PL, Madigan MC, Billson FA (1997) Effect of human vitreous and hyalocyte-derived factors on vascular endothelial cell growth. Aust N Z J Ophthalmol 1:S57-60. https://doi.org/10.1111/j.1442-9071.1997.tb01758.x

    Article  Google Scholar 

  96. Boneva SK, Wolf J, Rosmus DD, Schlecht A, Prinz G, Laich Y, Boeck M, Zhang P, Hilgendorf I, Stahl A et al (2020) Transcriptional profiling uncovers human hyalocytes as a unique innate immune cell population. Front Immunol 11:567274. https://doi.org/10.3389/fimmu.2020.567274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Mendes-Jorge L, Ramos D, Luppo M, Llombart C, Alexandre-Pires G, Nacher V, Melgarejo V, Correia M, Navarro M, Carretero A et al (2009) Scavenger function of resident autofluorescent perivascular macrophages and their contribution to the maintenance of the blood-retinal barrier. Invest Ophthalmol Vis Sci 50:5997–6005. https://doi.org/10.1167/iovs.09-3515

    Article  PubMed  Google Scholar 

  98. Koizumi T, Kerkhofs D, Mizuno T, Steinbusch HWM, Foulquier S (2019) Vessel-associated immune cells in cerebrovascular diseases: from perivascular macrophages to vessel-associated microglia. Front Neurosci 13:1291. https://doi.org/10.3389/fnins.2019.01291

    Article  PubMed  PubMed Central  Google Scholar 

  99. Zhang NT, Nesper PL, Ong JX, Wang JM, Fawzi AA, Lavine JA (2022) Macrophage-like cells are increased in patients with vision-threatening diabetic retinopathy and correlate with macular edema. Diagnostics (Basel, Switzerland) 12:2793. https://doi.org/10.3390/diagnostics12112793

    Article  CAS  PubMed  Google Scholar 

  100. Yamaguchi M, Nakao S, Wada I, Matoba T, Arima M, Kaizu Y, Shirane M, Ishikawa K, Nakama T, Murakami Y et al (2022) Identifying hyperreflective foci in diabetic retinopathy via VEGF-induced local self-renewal of CX3CR1+ vitreous resident macrophages. Diabetes 71:2685–2701. https://doi.org/10.2337/db21-0247

    Article  CAS  PubMed  Google Scholar 

  101. Wang Z, An H, Tang J, Jin E, Li S, Zhang L, Huang L, Qu J (2023) Elevated number and density of macrophage-like cell as a novel inflammation biomarker in diabetic macular edema. Sci Rep 13:5320. https://doi.org/10.1038/s41598-023-32455-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Wang W, Sun G, Xu A, Chen C (2023) Proliferative diabetic retinopathy and diabetic macular edema are two factors that increase macrophage-like cell density characterized by en face optical coherence tomography. BMC Ophthalmol 23:46. https://doi.org/10.1186/s12886-023-02794-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Wolf J, Boneva S, Rosmus DD, Agostini H, Schlunck G, Wieghofer P, Schlecht A, Lange C (2022) Deciphering the molecular signature of human hyalocytes in relation to other innate immune cell populations. Invest Ophthalmol Vis Sci 63:9. https://doi.org/10.1167/iovs.63.3.9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Boneva SK, Wolf J, Hajdú RI, Prinz G, Salié H, Schlecht A, Killmer S, Laich Y, Faatz H, Lommatzsch A et al (2021) In-depth molecular characterization of neovascular membranes suggests a role for hyalocyte-to-myofibroblast transdifferentiation in proliferative diabetic retinopathy. Front Immunol 12:757607. https://doi.org/10.3389/fimmu.2021.757607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Bisen JB, Heisel CJ, Duffy BV, Decker NL, Fukuyama H, Ghazi O et al (2023) Association between macrophage-like cell density and ischemia metrics in diabetic eyes. Exp Eye Res 237:109703. https://doi.org/10.1016/j.exer.2023.109703

    Article  CAS  PubMed  Google Scholar 

  106. Fumagalli S, Perego C, Pischiutta F, Zanier ER, De Simoni MG (2015) The ischemic environment drives microglia and macrophage function. Front Neurol 6:81. https://doi.org/10.3389/fneur.2015.00081

    Article  PubMed  PubMed Central  Google Scholar 

  107. Park YG, Lee JY, Kim C, Park YH (2021) Early microglial changes associated with diabetic retinopathy in rats with streptozotocin-induced diabetes. J Diabetes Res 2021:492093. https://doi.org/10.1155/2021/4920937

    Article  CAS  Google Scholar 

  108. Jiang M, Xie H, Zhang C, Wang T, Tian H, Lu L, Xu JY, Xu GT, Liu L, Zhang J (2022) Enhancing fractalkine/CX3CR1 signalling pathway can reduce neuroinflammation by attenuating microglia activation in experimental diabetic retinopathy. J Cell Mol Med 26:1229–1244. https://doi.org/10.1111/jcmm.17179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Lv K, Ying H, Hu G, Hu J, Jian Q, Zhang F (2022) Integrated multi-omics reveals the activated retinal microglia with intracellular metabolic reprogramming contributes to inflammation in STZ-induced early diabetic retinopathy. Front Immunol 13:942768. https://doi.org/10.3389/fimmu.2022.942768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Sun L, Wang R, Hu G, Liu H, Lv K, Duan Y, Shen N, Wu J, Hu J, Liu Y et al (2021) Single cell RNA sequencing (scRNA-Seq) deciphering pathological alterations in streptozotocin-induced diabetic retinas. Exp Eye Res 210:108718. https://doi.org/10.1016/j.exer.2021.108718

    Article  CAS  PubMed  Google Scholar 

  111. Zhang R, Huang C, Chen Y, Li T, Pang L (2022) Single-cell transcriptomic analysis revealing changes in retinal cell subpopulation levels and the pathways involved in diabetic retinopathy. Ann Transl Med 10:562. https://doi.org/10.21037/atm-22-1546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Lee H, Jang H, Choi YA, Kim HC, Chung H (2018) Association between soluble CD14 in the aqueous humor and hyperreflective foci on optical coherence tomography in patients with diabetic macular edema. Invest Ophthalmol Vis Sci 59:715–721. https://doi.org/10.1167/iovs.17-23042

    Article  CAS  PubMed  Google Scholar 

  113. Karlstetter M, Scholz R, Rutar M, Wong WT, Provis JM, Langmann T (2015) Retinal microglia: just bystander or target for therapy? Prog Retin Eye Res 45:30–57. https://doi.org/10.1016/j.preteyeres.2014.11.004

    Article  PubMed  Google Scholar 

  114. Murenu E, Gerhardt MJ, Biel M, Michalakis S (2022) More than meets the eye: the role of microglia in healthy and diseased retina. Front Immunol 13:1006897. https://doi.org/10.3389/fimmu.2022.1006897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Krady JK, Basu A, Allen CM, Xu Y, LaNoue KF, Gardner TW, Levison SW (2005) Minocycline reduces proinflammatory cytokine expression, microglial activation, and caspase-3 activation in a rodent model of diabetic retinopathy. Diabetes 54:1559–1565. https://doi.org/10.2337/diabetes.54.5.1559

    Article  CAS  PubMed  Google Scholar 

  116. Zeng XX, Ng YK, Ling EA (2000) Neuronal and microglial response in the retina of streptozotocin-induced diabetic rats. Vis Neurosci 17:463–471. https://doi.org/10.1017/s0952523800173122

    Article  CAS  PubMed  Google Scholar 

  117. Rungger-Brändle E, Dosso AA, Leuenberger PM (2000) Glial reactivity, an early feature of diabetic retinopathy. Invest Ophthalmol Vis Sci 41:1971–1980. https://doi.org/10.1002/jcb.30378

    Article  CAS  PubMed  Google Scholar 

  118. Xiao Y, Hu X, Fan S, Zhong J, Mo X, Liu X, Hu Y (2021) Single-cell transcriptome profiling reveals the suppressive role of retinal neurons in microglia activation under diabetes mellitus. Front Cell Dev Bio 9:680947. https://doi.org/10.3389/fcell.2021.680947

    Article  Google Scholar 

  119. Chang KC, Shieh B, Petrash JM (2019) Role of aldose reductase in diabetes-induced retinal microglia activation. Chem Biol Interact 302:46–52. https://doi.org/10.1016/j.cbi.2019.01.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Schlotterer A, Kolibabka M, Lin J, Acunman K, Dietrich N, Sticht C, Fleming T, Nawroth P, Hammes HP (2019) Methylglyoxal induces retinopathy-type lesions in the absence of hyperglycemia: studies in a rat model. Faseb j 33:4141–4153. https://doi.org/10.1096/fj.201801146RR

    Article  CAS  PubMed  Google Scholar 

  121. Torres-Castro I, Arroyo-Camarena ÚD, Martínez-Reyes CP, Gómez-Arauz AY, Dueñas-Andrade Y, Hernández-Ruiz J, Béjar YL, Zaga-Clavellina V, Morales-Montor J, Terrazas LI et al (2016) Human monocytes and macrophages undergo M1-type inflammatory polarization in response to high levels of glucose. Immunol Lett 176:81–89. https://doi.org/10.1016/j.imlet.2016.06.001

    Article  CAS  PubMed  Google Scholar 

  122. Cheng CI, Chen PH, Lin YC, Kao YH (2015) High glucose activates Raw264.7 macrophages through RhoA kinase-mediated signaling pathway. Cell Signal 27:283–292. https://doi.org/10.1016/j.cellsig.2014.11.012

    Article  CAS  PubMed  Google Scholar 

  123. Al-Rashed F, Sindhu S, Arefanian H, Al Madhoun A, Kochumon S, Thomas R, Al-Kandari S, Alghaith A, Jacob T, Al-Mulla F et al (2020) Repetitive intermittent hyperglycemia drives the M1 polarization and inflammatory responses in THP-1 macrophages through the mechanism involving the TLR4-IRF5 pathway. Cells 9:1892. https://doi.org/10.3390/cells9081892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Jia Y, Zhou Y (2020) Involvement of lncRNAs and macrophages: potential regulatory link to angiogenesis. J Immunol Res 2020:1704631. https://doi.org/10.1155/2020/1704631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Pavlou S, Lindsay J, Ingram R, Xu H, Chen M (2018) Sustained high glucose exposure sensitizes macrophage responses to cytokine stimuli but reduces their phagocytic activity. BMC Immuno 19:24. https://doi.org/10.1186/s12865-018-0261-0

    Article  CAS  Google Scholar 

  126. Santiago AR, Boia R, Aires ID, Ambrósio AF, Fernandes R (2018) Sweet stress: coping with vascular dysfunction in diabetic retinopathy. Front Physiol 9:820. https://doi.org/10.3389/fphys.2018.00820

    Article  PubMed  PubMed Central  Google Scholar 

  127. Hwang SJ, Ahn BJ, Shin MW, Song YS, Choi Y, Oh GT, Kim KW, Lee HJ (2022) miR-125a-5p attenuates macrophage-mediated vascular dysfunction by targeting Ninjurin1. Cell Death Differ 29:1199–1210. https://doi.org/10.1038/s41418-021-00911-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Wen Y, Chen X, Feng H, Wang X, Kang X, Zhao P, Zhao C, Wei Y (2022) Kdm6a deficiency in microglia/macrophages epigenetically silences Lcn2 expression and reduces photoreceptor dysfunction in diabetic retinopathy. Metabolism 136:155293. https://doi.org/10.1016/j.metabol.2022.155293

    Article  CAS  PubMed  Google Scholar 

  129. Inagaki Y, Yamagishi S, Okamoto T, Takeuchi M, Amano S (2003) Pigment epithelium-derived factor prevents advanced glycation end products-induced monocyte chemoattractant protein-1 production in microvascular endothelial cells by suppressing intracellular reactive oxygen species generation. Diabetologia 46:284–287. https://doi.org/10.1007/s00125-002-1013-4

    Article  CAS  PubMed  Google Scholar 

  130. Wieghofer P, Engelbert M, Chui T, Rosen R, Sakamoto T, Sebag J (2022) Hyalocyte origin, structure, and imaging. Expert review of ophthalmology 17:233–248. https://doi.org/10.1080/17469899.2022.2100762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The figure in this review was created with Biorender.

Funding

This research was funded by the Key Research and Development Program of Shaanxi Province (2023-YBSF-585) and the Natural Science Basic Research Program of Shaanxi Province (2022JQ-857).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, AZ; methodology, YZ; writing—original draft preparation, YZ; writing—review and editing, AZ; visualization, YZ.

Corresponding author

Correspondence to Aiyi Zhou.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Zhou, A. Macrophage activation contributes to diabetic retinopathy. J Mol Med 102, 585–597 (2024). https://doi.org/10.1007/s00109-024-02437-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-024-02437-5

Keywords

Navigation