Skip to main content
Log in

Large Hermitian hull GRS codes of any given length

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

The construction of Hermitian self-orthogonal generalized Reed-Solomon (GRS) codes of many specific lengths and large dimensions has been an active topic. The construction of Euclidean self-dual GRS codes and twisted generalized Reed-Solomon (TGRS) codes attracts some attentions. In this paper, we construct GRS \([n, k, n-k+1]_{q^2}\) codes (thus MDS codes) over \(\textbf{F}_{q^2}\) of the arbitrary length n satisfying \(n \le q^2+1\) and any given distance d satisfying \(d=O(q^2)\), such that the dimensions \(h \le k\) of its Hermitian hull is at least \(h=O(k)\). This work is a natural extension of previous constructions of Hermitian self-orthogonal GRS codes of many specific lengths. Our method can be used to construct large Hermitian hull MDS TGRS codes of the length \(n|(q^2-1)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ball S.: On large subsets of a finite vector space in which every subset of basis size is a basis. J. EMS 14, 733–748 (2012).

    Google Scholar 

  2. Ball S.: Some constructions of quantum MDS codes. Des. Codes Cryptogr. 89, 811–821 (2021).

    Article  MathSciNet  Google Scholar 

  3. Ball S., Vilar R.: Determining when a truncated generalised Reed-Solomon code is Hermitian self-orthogonal. IEEE Trans. Inf. Theory 68(6), 3796–3805 (2022).

    Article  MathSciNet  Google Scholar 

  4. Ball S., Vilar R.: The geometry of Hermitian orthogonal codes. J. Geom. 113, 7 (2022).

    Article  MathSciNet  Google Scholar 

  5. Ball S., Centelles A., Huber F.: Quantum error-correcting codes and their geometries. Ann. l’inst. Henri Poincare D 10(2), 337–405 (2023).

    MathSciNet  Google Scholar 

  6. Beelen P., Puchinger S., Rosenkilde J.: Twisted Reed-Solomon codes. IEEE Trans. Inf. Theory 68(5), 3047–3061 (2022).

    Article  MathSciNet  Google Scholar 

  7. Brun T.A., Devetak I., Hsieh M.-H.: Correcting quantum errors with entanglemnent. Science 304(5798), 436–439 (2006).

    Article  ADS  Google Scholar 

  8. Chen H.: New MDS entanglement-assisted quantum codes from Hermitian self-orthogonal codes. Des. Codes Cryptogr. 91, 2665–2676 (2023).

    Article  MathSciNet  Google Scholar 

  9. Chen H.: On the hull-variation problem of equivalent linear codes. IEEE Trans. Inf. Theory 69(5), 2911–2922 (2023).

    Article  ADS  MathSciNet  Google Scholar 

  10. Christensen R.B., Munuera C., Pereira F.R.F., Ruano D.: An algorithmic approach to entanglement-assisted quantum error-correcting codes from Hermitian curves. Adv. Math. Commun. 17(1), 78–97 (2023).

    Article  MathSciNet  Google Scholar 

  11. Conway J.H., Slonae N.J.A.: Sphere Packings, Lattices and Groups, 3rd edn Springer, New York (1999).

    Book  Google Scholar 

  12. Fang W., Fu F., Li L., Zhu S.: Euclidean and Hermitian hulls of MDS codes and their application to quantum codes. IEEE Trans. Inf. Theory 66(6), 3527–3537 (2020).

    Article  Google Scholar 

  13. Fang X., Liu M., Luo J.: New MDS Euclidean self-orthoginal codes. IEEE Trans. Inf. Theory 67(1), 130–137 (2021).

    Article  Google Scholar 

  14. Galindo C., Hernando F., Ruano D.: Classical and quantum evaluation codes at trace roots. IEEE Trans. Inf. Theory 65(4), 2593–2602 (2019).

    Article  MathSciNet  Google Scholar 

  15. Gao Y., Yue Q., Huang X., Zeng J.: Hulls of generalized Reed-Solomon codes via Goppa codes and their applications to quamtum codes. IEEE Trans. Inf. Theory 67(10), 6619–6626 (2021).

    Article  Google Scholar 

  16. Grassl M., Gulliver T.A.: On self-dual MDS codes. In: Proceedings of International Symposium on Information Theory, pp. 1954–1957, (2008).

  17. Guo G., Li R.: Hermitian self-dual GRS and extended GRS codes. IEEE Commun. Lett. 25(4), 1062–1065 (2021).

    Article  Google Scholar 

  18. Harada M.: On the covering radius of ternary extremal self-dual codes. Des. Codes Cryptogr. 33, 149–158 (2004).

    Article  MathSciNet  Google Scholar 

  19. He X., Xu L., Chen H.: New \(q\)-ary quamtum MDS codes with distances bigger than \(\frac{q}{2}\). Quantum Inf. Process. 15, 2745–2758 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  20. Huffman W.C., Pless V.: Fundamentals of Error-Correcting Codes. Cambridge University Press, Cambridge (2003).

    Book  Google Scholar 

  21. Jin L., Xing C.: Euclid and Hermitian self-orthogonal algebraic geometric codes and their applications to quantum codes. IEEE Trans. Inf. Theory 58(8), 5484–5489 (2012).

    Article  Google Scholar 

  22. Jin L., Xing C.: New MDS self-dual codes from generalized Reed-Solomon codes. IEEE Trans. Inf. Theory 63(3), 1434–1438 (2017).

    Article  MathSciNet  Google Scholar 

  23. Jin L., Ling S., Luo J., Xing C.: Application of classical Hermitian self-orthogonal MDS codes to quantum MDS codes. IEEE Trans. Inf. Theory 56(9), 4735–4740 (2010).

    Article  MathSciNet  Google Scholar 

  24. Joshi D.D.: A note on upper bounds for minimum distance codes. Inf. Control 1, 289–295 (1958).

    Article  MathSciNet  Google Scholar 

  25. Kai X., Zhu S.: New quantum MDS codes from negacyclic codes. IEEE Trans. Inf. Theory 59(2), 1193–1197 (2013).

    Article  MathSciNet  Google Scholar 

  26. Kai X., Zhu S., Li P.: Constacyclic codes and some new quantum MDS codes. IEEE Trans. Inf. Theory 60(4), 2080–2086 (2014).

    Article  MathSciNet  Google Scholar 

  27. La Guardia G.G.: New quantum MDS codes. IEEE Trans. Inf. Theory 57(8), 5551–5554 (2011).

    Article  MathSciNet  Google Scholar 

  28. Landjev I., Rousseva A.: The main conjucture for near MDS code, WCC 2015. In: Canteaut A., Leurent G., Naya-Plasencia M. (eds.) Proceedings of 9th International Workshop on Coding and Cryptography, Apr 2015, Paris, France (2015).

  29. Luo G., Cao X., Chen X.: MDS codes with hulls of arbitray dimensions and their quantum error correction. IEEE Trans. Inf. Theory 65(5), 2944–2952 (2019).

    Article  Google Scholar 

  30. Luo G., Ezerman M.F., Grassl M., Ling S.: How much entanglement does a quantum code need? (2022). arXiv:2207.05647

  31. MacWilliams F.J., Sloane N.J.A.: The Theory of Error-Correcting Codes, vol. 16, 3rd edn North-Holland Mathematical Library, Amsterdam (1977).

    Google Scholar 

  32. Niu Y., Yue Q., Wu Y., Hu L.: Hermitian self-dual, MDS and generalized Reed-Solomon codes. IEEE Commun. Lett. 23(5), 781–784 (2019).

    Article  Google Scholar 

  33. Rains E.M., Sloane N.J.A.: Self-dual codes. In: Pless V., Huffman W.C. (eds.) Handbook of Coding Theory, pp. 177–294. Elsevier, Amsterdam (1998).

    Google Scholar 

  34. Reed I.S., Solomon G.: Polynomial codes over certain finite fields. J. SIAM 8, 300–304 (1960).

    MathSciNet  Google Scholar 

  35. Segre B.: Curve raizionali normali e k-archi negli spazi finiti. Ann. Mat. Pura Appl. 39, 357–378 (1955).

    Article  MathSciNet  Google Scholar 

  36. Singleton R.: Maximum distance \(q\)-nary codes. IEEE Trans. Inf. Theory 10(2), 116–118 (1964).

    Article  MathSciNet  Google Scholar 

  37. Stichtenoth H.: Transative and self-dual codes attaining the Tsafasman-Vládut-Zink bound. IEEE Trans. Inf. Theory 52(5), 2218–2224 (2006).

    Article  Google Scholar 

  38. Sui J., Yue Q., Li X., Huang D.: MDS, near-MDS or \(2\)-MDS self-dual codes via twisted generalized Reed-Solomon codes. IEEE Trans. Inf. Theory 68(12), 7842–7831 (2022).

    Article  MathSciNet  Google Scholar 

  39. Zhang A., Feng K.: A unified approach to construct MDS self-dual codes via Reed-Soloon code. IEEE Trans. Inf. Theory 66(6), 3650–3656 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

The author thanks two reviewers sincerely for helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Chen.

Additional information

Communicated by K.-U. Schmidt.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The research of Hao Chen was supported by NSFC Grant 62032009.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H. Large Hermitian hull GRS codes of any given length. Des. Codes Cryptogr. (2024). https://doi.org/10.1007/s10623-024-01369-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10623-024-01369-y

Keywords

Mathematics Subject Classification

Navigation