Skip to main content
Log in

Risk assessment for extreme air pollution events using vine copula

  • ORIGINAL PAPER
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

This study proposes an alternative risk assessment approach for evaluating extreme air pollution events through vine copula modeling. Three characteristics of unhealthy air pollution events (i.e., severity, intensity, and duration) in Klang, Malaysia, are examined. The vine copula is fitted using sequential maximum likelihood estimation and joint maximum likelihood estimation, with a subsequent comparison based on criteria such as log-likelihood, Akaike’s information criterion, and Bayesian’s information criterion. Model fitting and comparison studies demonstrate that the most well-fitted vine copula model, achieved through joint maximum likelihood estimation, comprises the Joe, Rotated Tawn type 2 (180 degrees), and Rotated BB8 (90 degrees) copulas. The positive Kendall's τ correlation coefficient (0.26) for the obtained vine copula indicates that higher values of one characteristic are likely to be associated with higher values of the other characteristics, and vice versa. Furthermore, with the upper tail dependence coefficient (0.31) surpassing the lower tail dependence coefficient (0.18), indicating stronger dependence in the upper tail of their distribution, this underscores the significance of conducting risk assessments for extreme air pollution events characterized by extreme levels of severity, intensity, and duration. A vine copula-based simulation study is conducted to delve deeper into the risk assessment, revealing that extreme air pollution events are not linked to the highest values of joint and conditional probabilities. These findings suggest that extreme values in those distinct characteristics do not consistently occur simultaneously. The return period measures also indicate that extreme air pollution events have long waiting periods. Despite the current status of extreme air pollution events in Klang being controllable, achieving effective control necessitates ongoing efforts, encompassing regulatory actions, industrial controls, robust public transportation programs, and a dedicated transition to cleaner energy sources. This task is crucial for ensuring continuous clean air quality, sustaining our environment, and avoiding negative impacts on the economy and public well-being.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Afroz R, Hassan MN, Ibrahim NA (2003) Review of air pollution and health impacts in Malaysia. Environ Res 92:71–77

    Article  PubMed  CAS  Google Scholar 

  • Aghamohammadi N, Isahak M (2018) Climate change and air pollution in Malaysia. Climate Change and Air Pollution: the impact on human health in developed and developing countries, pp 241–254

  • Al-Dhurafi NA, Masseran N, Zamzuri ZH (2018a) Compositional time series analysis for air pollution index data. Stoch Environ Res Risk Assess 32:2903–2911

    Article  Google Scholar 

  • Al-Dhurafi NA, Masseran N, Zamzuri ZH, Razali AM (2018b) Modeling unhealthy air pollution index using a peaks-over-threshold method. Environ Eng Sci 35:101–110

    Article  CAS  Google Scholar 

  • Alyousifi Y, Masseran N, Ibrahim K (2018) Modeling the stochastic dependence of air pollution index data. Stoch Environ Res Risk Assess 32:1603–1611

    Article  Google Scholar 

  • Amato F, Laib M, Guignard F, Kanevski M (2020) Analysis of air pollution time series using complexity-invariant distance and information measures. Physica A 547:124391

    Article  CAS  Google Scholar 

  • Amin MT, Khan F, Ahmed S, Imtiaz S (2021) Risk-based fault detection and diagnosis for nonlinear and non-Gaussian process systems using R-vine copula. Process Saf Environ Prot 150:123–136

    Article  CAS  Google Scholar 

  • Amini S, Bidaki RZ, Mirabbasi R, Shafaei M (2022) Flood risk analysis based on nested copula structure in Armand Basin. Iran Acta Geophysica 70:1385–1399

    Article  ADS  Google Scholar 

  • Arya Farid K, Zhang L (2017) Copula-based markov process for forecasting and analyzing risk of water quality time series. J Hydrol Eng 22:04017005

    Article  Google Scholar 

  • Atique F, Attoh-Okine N (2016) Using copula method for pipe data analysis. Constr Build Mater 106:140–148

    Article  Google Scholar 

  • Bhatti MI, Do HQ (2019) Recent development in copula and its applications to the energy, forestry and environmental sciences. Int J Hydrogen Energy 44:19453–19473

    Article  CAS  Google Scholar 

  • Cirillo P, Taleb NN (2020) Tail risk of contagious diseases. Nat Phys 16:606–613

    Article  CAS  Google Scholar 

  • Clayton DG (1978) A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence. Biometrika 65:141–151

    Article  MathSciNet  Google Scholar 

  • Czado C, Nagler T (2022a) Vine copula based modeling. Ann Rev Stat Appl 9:453–477

    Article  MathSciNet  Google Scholar 

  • Czado C (2019) Analyzing dependent data with vine copulas. Lecture Notes in Statistics, vol 222. Springer

  • Daneshkhah A, Remesan R, Chatrabgoun O, Holman IP (2016) Probabilistic modeling of flood characterizations with parametric and minimum information pair-copula model. J Hydrol 540:469–487

    Article  Google Scholar 

  • Frank MJ (1979) On the simultaneous associativity of F (x, y) and x+ y− F (x, y). Aequationes Math 19:194–226

    Article  MathSciNet  Google Scholar 

  • Gautam D, Bolia BN (2020) Air pollution: impact and interventions. Air Qual Atmos Health 13:209–223

    Article  CAS  Google Scholar 

  • Genest C, Favre A-C (2007) Everything you always wanted to know about copula modeling but were afraid to ask. J Hydrol Eng 12:347–368

    Article  Google Scholar 

  • Genest C, Rivest L-P (1993) Statistical inference procedures for bivariate Archimedean copulas. J Am Stat Assoc 88:1034–1043

    Article  MathSciNet  Google Scholar 

  • Ismail MS, Masseran N (2023) Modeling the characteristics of unhealthy air pollution events using bivariate copulas. Symmetry 15:907

    Article  ADS  Google Scholar 

  • Jaworski P, Durante F, Hardle WK, Rychlik T (2010) Copula theory and its applications. Springer

    Book  Google Scholar 

  • Joe H (2014) Dependence modeling with copulas. CRC Press

    Book  Google Scholar 

  • Joe H, Kurowicka D (2011) Dependence modeling: vine copula handbook. World Scientific

    Google Scholar 

  • Joe H, Li H, Nikoloulopoulos AK (2010) Tail dependence functions and vine copulas. J Multivar Anal 101:252–270

    Article  MathSciNet  Google Scholar 

  • Jonidi Jafari A, Charkhloo E, Pasalari H (2021) Urban air pollution control policies and strategies: a systematic review. J Environ Health Sci Eng 19:1911–1940

    Article  PubMed  PubMed Central  Google Scholar 

  • Katz RW (2010) Statistics of extremes in climate change. Clim Change 100:71–76

    Article  ADS  CAS  Google Scholar 

  • Kim G, Silvapulle MJ, Silvapulle P (2007) Comparison of semiparametric and parametric methods for estimating copulas. Comput Stat Data Anal 51:2836–2850

    Article  MathSciNet  Google Scholar 

  • Kotcher J, Maibach E, Choi W-T (2019) Fossil fuels are harming our brains: identifying key messages about the health effects of air pollution from fossil fuels. BMC Public Health 19:1079

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar R, Gupta P (2016) Air pollution control policies and regulations. In: Kulshrestha U, Saxena P (eds) Plant responses to air pollution. Springer Singapore, Singapore, pp 133–149

    Chapter  Google Scholar 

  • Li Z, Beirlant J, Yang L (2022) A new class of copula regression models for modelling multivariate heavy-tailed data. Insurance Math Econom 104:243–261

    Article  MathSciNet  Google Scholar 

  • Liu Z, Cheng L, Hao Z, Li J, Thorstensen A, Gao H (2018) A framework for exploring joint effects of conditional factors on compound floods. Water Resour Res 54:2681–2696

    Article  ADS  Google Scholar 

  • Lü T-J, Tang X-S, Li D-Q, Qi X-H (2020) Modeling multivariate distribution of multiple soil parameters using vine copula model. Comput Geotech 118:103340

    Article  Google Scholar 

  • Lu JG (2020) Air pollution: a systematic review of its psychological, economic, and social effects. Curr Opin Psychol 32:52–65

    Article  PubMed  Google Scholar 

  • Ma Y, Cheng B, Li H, Feng F, Zhang Y, Wang W, Qin P (2023) Air pollution and its associated health risks before and after COVID-19 in Shaanxi Province China. Environ Pollut 320:121090

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Madonsela BS (2023) A meta-analysis of particulate matter and nitrogen dioxide air quality monitoring associated with the burden of disease in sub-Saharan Africa. J Air Waste Manag Assoc 73:737–749

    Article  PubMed  CAS  Google Scholar 

  • Manga E, Awang N (2018) Bayesian autoregressive spatiotemporal model of PM10 concentrations across Peninsular Malaysia. Stoch Environ Res Risk Assess 32:3409–3419

    Article  Google Scholar 

  • Masseran N (2021a) Modeling the characteristics of unhealthy air pollution events: a copula approach. Int J Environ Res Public Health 18:8751

    Article  PubMed  PubMed Central  Google Scholar 

  • Masseran N (2021b) Power-law behaviors of the duration size of unhealthy air pollution events. Stoch Environ Res Risk Assess 35:1499–1508

    Article  Google Scholar 

  • Masseran N, Hussain SI (2020) Copula modelling on the dynamic dependence structure of multiple air pollutant variables. Mathematics 8:1910

    Article  Google Scholar 

  • Masseran N, Safari MAM (2020a) Intensity–duration–frequency approach for risk assessment of air pollution events. J Environ Manage 264:110429

    Article  PubMed  Google Scholar 

  • Masseran N, Safari MAM (2020b) Risk assessment of extreme air pollution based on partial duration series: IDF approach. Stoch Environ Res Risk Assess 34:545–559

    Article  Google Scholar 

  • Masseran N, Safari MAM (2022) Statistical modeling on the severity of unhealthy air pollution events in Malaysia. Mathematics 10:3004

    Article  Google Scholar 

  • Masseran N, Razali AM, Ibrahim K, Latif MT (2016) Modeling air quality in main cities of Peninsular Malaysia by using a generalized Pareto model. Environ Monit Assess 188:1–12

    Article  CAS  Google Scholar 

  • Masseran N, Safari M, Hussain S (2021) Modeling the distribution of duration time for unhealthy air pollution events. J Phys Confer Ser IOP Publishing, p 012088

  • McNeil AJ, Frey R, Embrechts P (2015) Quantitative risk management: concepts, techniques and tools-revised edition. Princeton University Press

    Google Scholar 

  • Mendenhall W, Beaver RJ, Beaver BM (2012) Introduction to probability and statistics. Cengage Learning

    Google Scholar 

  • Mukhopadhyay A, Pandit V (2014) Control of industrial air pollution through sustainable development. Environ Dev Sustain 16:35–48

    Article  Google Scholar 

  • Nelsen RB (2006) An introduction to copulas. Springer

    Google Scholar 

  • Nguyen PM, Liu W-H (2023) Portfolio management using time-varying vine copula: an application on the G7 equity market indices. Eur J Finance 29:1303–1329

    Article  Google Scholar 

  • Nguyen C, Bhatti MI, Komorníková M, Komorník J (2016) Gold price and stock markets nexus under mixed-copulas. Econ Model 58:283–292

    Article  Google Scholar 

  • Nguyen-Huy T, Deo RC, Mushtaq S, An-Vo D-A, Khan S (2018) Modeling the joint influence of multiple synoptic-scale, climate mode indices on Australian wheat yield using a vine copula-based approach. Eur J Agron 98:65–81

    Article  Google Scholar 

  • Othman J, Sahani M, Mahmud M, Sheikh Ahmad MK (2014) Transboundary smoke haze pollution in Malaysia: Inpatient health impacts and economic valuation. Environ Pollut 189:194–201

    Article  PubMed  CAS  Google Scholar 

  • Ou Y, West JJ, Smith SJ, Nolte CG, Loughlin DH (2020) Air pollution control strategies directly limiting national health damages in the US. Nat Commun 11:957

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  • Patton AJ (2012) A review of copula models for economic time series. J Multivar Anal 110:4–18

    Article  MathSciNet  Google Scholar 

  • Perera F, Ashrafi A, Kinney P, Mills D (2019) Towards a fuller assessment of benefits to children’s health of reducing air pollution and mitigating climate change due to fossil fuel combustion. Environ Res 172:55–72

    Article  PubMed  CAS  Google Scholar 

  • Pourkhanali A, Kim J-M, Tafakori L, Fard FA (2016) Measuring systemic risk using vine-copula. Econ Model 53:63–74

    Article  Google Scholar 

  • Ravindra K, Vakacherla S, Singh T, Upadhya AR, Rattan P, Mor S (2023) Long-term trend of PM2.5 over five Indian megacities using a new statistical approach. Stoch Environ Res Risk Assess

  • Schepsmeier U, Stoeber J, Brechmann EC, Graeler B, Nagler T, Erhardt T, Almeida C, Min A, Czado C, Hofmann M (2015) Package ‘vinecopula’. R package version 2

  • Semenov M, Smagulov D (2019) Copula models comparison for portfolio risk assessment. In: Kaz M, Ilina T, Medvedev GA (eds) Global economics and management: transition to economy 4.0. Springer International Publishing, Cham, pp 91–102

    Google Scholar 

  • Sen PK (2011) Introduction to Nonparametric Estimation by Alexandre B. Tsybakov. Wiley Online Library

  • Shafaei M, Fakheri-Fard A, Dinpashoh Y, Mirabbasi R, De Michele C (2017) Modeling flood event characteristics using D-vine structures. Theoret Appl Climatol 130:713–724

    Article  ADS  Google Scholar 

  • Shan B, Guo S, Wang Y, Li H, Guo P (2021) Vine copula and cloud model-based programming approach for agricultural water allocation under uncertainty. Stoch Environ Res Risk Assess 35:1895–1915

    Article  Google Scholar 

  • Shindell D, Smith CJ (2019) Climate and air-quality benefits of a realistic phase-out of fossil fuels. Nature 573:408–411

    Article  ADS  PubMed  CAS  Google Scholar 

  • Silverman BW (2018) Density estimation for statistics and data analysis. Routledge

    Book  Google Scholar 

  • Sklar A (1996) Random variables, distribution functions, and copulas: a personal look backward and forward. Lecture notes-monograph series, pp 1–14

  • Tosunoglu F, Gürbüz F, İspirli MN (2020) Multivariate modeling of flood characteristics using Vine copulas. Environ Earth Sci 79:459

    Article  ADS  Google Scholar 

  • Tuna Tuygun G, Elbir T (2023) Estimation of particulate matter concentrations in Türkiye using a random forest model based on satellite AOD retrievals. Stoch Environ Res Risk Assess 37:3469–3491

    Article  Google Scholar 

  • Tursumbayeva M, Muratuly A, Baimatova N, Karaca F, Kerimray A (2023) Cities of Central Asia: new hotspots of air pollution in the world. Atmos Environ 309:119901

    Article  CAS  Google Scholar 

  • Usmani RSA, Saeed A, Abdullahi AM, Pillai TR, Jhanjhi NZ, Hashem IAT (2020) Air pollution and its health impacts in Malaysia: a review. Air Qual Atmos Health 13:1093–1118

    Article  CAS  Google Scholar 

  • West SE, Bowyer CJ, Apondo W, Büker P, Cinderby S, Gray CM, Hahn M, Lambe F, Loh M, Medcalf A, Muhoza C, Muindi K, Njoora TK, Twigg MM, Waelde C, Walnycki A, Wainwright M, Wendler J, Wilson M, Price HD (2021) Using a co-created transdisciplinary approach to explore the complexity of air pollution in informal settlements. Human Soc Sci Commun 8:285

    Article  Google Scholar 

  • Wu J, Grande G, Triolo F, Pyko A, Sjöberg L, Ljungman P, Eneroth K, Bellander T, Rizzuto D (2023) Air pollution, social engagement, and depression in older adults: results from a Swedish population-based cohort study. Environ Pollut 336:122394

    Article  PubMed  CAS  Google Scholar 

  • Yan J (2023) Multivariate modeling with copulas and engineering applications. In: Pham H (ed) Springer handbook of engineering statistics. Springer, London, pp 931–945

    Chapter  Google Scholar 

  • Yu B, Huang C, Liu Z, Wang H, Wang L (2011) A chaotic analysis on air pollution index change over past 10 years in Lanzhou, northwest China. Stoch Environ Res Risk Assess 25:643–653

    Article  Google Scholar 

  • Yu M, Zhu Y, Lin C-J, Wang S, Xing J, Jang C, Huang J, Huang J, Jin J, Yu L (2019) Effects of air pollution control measures on air quality improvement in Guangzhou, China. J Environ Manage 244:127–137

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yu R, Yang R, Zhang C, Špoljar M, Kuczyńska-Kippen N, Sang G (2020) A vine copula-based modeling for identification of multivariate water pollution risk in an interconnected river system network. Water 12:2741

    Article  CAS  Google Scholar 

  • Yu C, Yan G, Ruan K, Liu X, Yu C, Mi X (2023) An ensemble convolutional reinforcement learning gate network for metro station PM2.5 forecasting. Stoch Environ Res Risk Assess

  • Zhang Y, Han A, Deng S, Wang X, Zhang H, Hajat S, Ji JS, Liang W, Huang C (2023) The impact of fossil fuel combustion on children’s health and the associated losses of human capital. Global Transitions 5:117–124

    Article  Google Scholar 

  • Zhang Z, Zhang G, Li L (2022) The spatial impact of atmospheric environmental policy on public health based on the mediation effect of air pollution in China. Environ Sci Pollut Res

  • Zhi B, Wang X, Xu F (2021) Portfolio optimization for inventory financing: copula-based approaches. Comput Oper Res 136:105481

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Malaysia Department of Environment for providing data on the air pollution index in the study area and the University Kebangsaan Malaysia for the Dana Impak Perdana 2.0 (Grant Number DIP-2022-002).

Funding

This research was funded by the University Kebangsaan Malaysia through the Dana Impak Perdana 2.0 (Grant Number DIP-2022-002).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Software, formal analysis, and investigation were performed by Mohd Sabri Ismail. Material preparation, data collection, supervision, and funding acquisition were performed by Nurulkamal Masseran. The first draft of the manuscript was written by Mohd Sabri Ismail and Nurulkamal Masseran commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mohd Sabri Ismail.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 32963 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ismail, M.S., Masseran, N. Risk assessment for extreme air pollution events using vine copula. Stoch Environ Res Risk Assess (2024). https://doi.org/10.1007/s00477-024-02682-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00477-024-02682-7

Keywords

Navigation