Skip to main content
Log in

Infrared Directional Spectral Emissivity of Tungsten-Copper Alloy in the 400–700 ℃ Temperature Range

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The tungsten-copper alloy is commonly used for the electrical contact in high current vacuum switch, where precise temperature monitoring of the contact is crucial for ensuring stable operation of the switch by radiation thermometry. However, accurate emissivity data of this alloy is necessary when using radiation thermometry for temperature measurement. Thus, the directional spectral emissivity of tungsten-copper alloy is investigated within the temperature range of 400–700 ℃ under vacuum in this work. The hemispherical total emissivity is calculated by numerically integrating the directional spectral emissivity. Experimental results found this tungsten-copper alloy agrees with the theoretical prediction of the electromagnetic theory, that is, the emissivity increases with increasing temperature, and decreases with increasing wavelength. A convergence phenomenon of spectral emissivity occurs when the polar angle exceeds approximately 50°. This means that the normal wavelength dependence undergoes a shift at high polar angles, which is typical behavior of metallic emissivity. Additionally, the effects of thermal cycle, surface roughness, and chemical composition on emissivity are analyzed in detail. Surface stress relaxation process results in a significant decrease in emissivity. Emissivity increases as the surface roughness and tungsten composition of alloy increases. However, the effects of surface roughness and chemical composition on emissivity gradually disappear at long wavelengths and high polar angles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A.G. Hamidi, H. Arabi, S. Rastegari, Int. J. Refract. Met. Hard Mater. 101, 105685 (2021). https://doi.org/10.1016/j.ijrmhm.2021.105685

    Article  Google Scholar 

  2. L. Xu, M. Yan, Y. Xia et al., J. Alloy. Compd. 592, 202–206 (2014). https://doi.org/10.1016/j.jallcom.2013.12.202

    Article  Google Scholar 

  3. X. Li, J. Zhou, Y. Xu et al., Int. J. Adv. Manuf. Technol. 101, 2977–2989 (2019). https://doi.org/10.1007/s00170-018-2996-4

    Article  Google Scholar 

  4. T. Bregel, R. Michal, K.E. Saeger et al., IEEE Trans. Compon. Hybrids Manuf. Technol. 14, 8–13 (1991). https://doi.org/10.1109/33.76502

    Article  Google Scholar 

  5. H.T. Lee, F.C. Hsu, T.Y. Tai, Mater. Sci. Eng. A 364, 346–356 (2004). https://doi.org/10.1016/j.msea.2003.08.046

    Article  Google Scholar 

  6. J.A. Myrick, M. Keyhani, J.I. Frankel, Exp. Therm. Fluid Sci. 104, 302–316 (2019). https://doi.org/10.1016/j.expthermflusci.2019.02.007

    Article  Google Scholar 

  7. M. Honner, P. Honnerová, Appl. Opt. 54, 669–683 (2015). https://doi.org/10.1364/AO.54.000669

    Article  ADS  Google Scholar 

  8. M.D.O. Moreira, A.M. Abrão, R.A.M. Ferreira et al., Int. J. Heat Mass Transf. 171, 121051 (2021). https://doi.org/10.1016/j.ijheatmasstransfer.2021.121051

    Article  Google Scholar 

  9. A. Araújo, Meas. Sci. Technol. 28, 082002 (2017). https://doi.org/10.1088/1361-6501/aa7b4b

    Article  ADS  Google Scholar 

  10. Y.B. Yu, W.K. Chow, J. Thermodyn. 2009, 823482 (2009). https://doi.org/10.1155/2009/823482

    Article  Google Scholar 

  11. T. Echániz, R.B. Pérez-Sáez, M.J. Tello, Measurement 110, 22–26 (2017). https://doi.org/10.1016/j.measurement.2017.06.010

    Article  ADS  Google Scholar 

  12. P. Honnerová, J.Í. Martan, M. Honner, Appl. Therm. Eng. 124, 261–270 (2017). https://doi.org/10.1016/j.applthermaleng.2017.06.022

    Article  Google Scholar 

  13. H. Singh, D.K. Shukla, Int. J. Therm. Sci. 59, 161–175 (2012). https://doi.org/10.1016/j.ijthermalsci.2012.03.017

    Article  Google Scholar 

  14. J. Cheng, L. Wan, Y. Cai et al., J. Mater. Process. Technol. 210, 137–142 (2010). https://doi.org/10.1016/j.jmatprotec.2009.08.001

    Article  Google Scholar 

  15. L. del Campo, R.B. Pérez-Sáez, M.J. Tello et al., Int. J. Thermophys. 27, 1160–1172 (2006). https://doi.org/10.1007/s10765-006-0081-y

    Article  ADS  Google Scholar 

  16. L. González-Fernández, E. Risueño, R.B. Pérez-Sáez et al., J. Alloy. Compd. 541, 144–149 (2012). https://doi.org/10.1016/j.jallcom.2012.06.117

    Article  Google Scholar 

  17. I. Setién-Fernández, T. Echániz, L. González-Fernández et al., Int. J. Heat Mass Transf. 71, 549–554 (2014). https://doi.org/10.1016/j.ijheatmasstransfer.2013.12.063

    Article  Google Scholar 

  18. C. Wen, I. Mudawar, Int. J. Heat Mass Transf. 47, 3591–3605 (2004). https://doi.org/10.1016/j.ijheatmasstransfer.2004.04.025

    Article  Google Scholar 

  19. C. Wen, I. Mudawar, Int. J. Heat Mass Transf. 49, 4279–4289 (2006). https://doi.org/10.1016/j.ijheatmasstransfer.2006.04.037

    Article  Google Scholar 

  20. Z. Zhang, M. Chen, P. Yu et al., Infrared Phys. Technol. 133, 104831 (2023). https://doi.org/10.1016/j.infrared.2023.104831

    Article  Google Scholar 

  21. L. del Campo, R.B. Pérez-Sáez, J. Alloy. Compd. 489, 482–487 (2010). https://doi.org/10.1016/j.jallcom.2009.09.091

    Article  Google Scholar 

  22. J. Qi, Q. Eri, B. Kong et al., Appl. Therm. Eng. 150, 641–650 (2019). https://doi.org/10.1016/j.applthermaleng.2018.11.091

    Article  Google Scholar 

  23. L. Li, K. Yu, K. Zhang et al., Exp. Therm. Fluid Sci. 125, 110379 (2021). https://doi.org/10.1016/j.expthermflusci.2021.110379

    Article  Google Scholar 

  24. W. Wang, L. Li, K. Yu et al., Infrared Phys. Technol. 128, 104515 (2023). https://doi.org/10.1016/j.infrared.2022.104515

    Article  Google Scholar 

  25. K. Yu, G. Wang, L. Li et al., Infrared Phys. Technol. 111, 103572 (2020). https://doi.org/10.1016/j.infrared.2020.103572

    Article  Google Scholar 

  26. K. Zhang, Y. Zhao, K. Yu et al., Infrared Phys. Technol. 92, 350–357 (2018). https://doi.org/10.1016/j.infrared.2018.06.031

    Article  ADS  Google Scholar 

  27. R.B. Pérez-Sáez, L. del Campo, M.J. Tello, Int. J. Thermophys. 29, 1141–1155 (2008). https://doi.org/10.1007/s10765-008-0402-4

    Article  ADS  Google Scholar 

  28. I. González de Arrieta, T. Echániz, R. Fuente et al., Metrologia 57, 045005 (2020). https://doi.org/10.1088/1681-7575/ab84ff

    Article  ADS  Google Scholar 

  29. K. Yu, H. Zhang, Y. Liu et al., Int. J. Heat Mass Transf. 129, 1066–1074 (2019). https://doi.org/10.1016/j.ijheatmasstransfer.2018.09.116

    Article  Google Scholar 

  30. L. Li, W. Ruan, W. Wang et al., Tribology Int. 185, 108557 (2023). https://doi.org/10.1016/j.triboint.2023.108557

    Article  Google Scholar 

  31. X. Wang, S. Wei, K. Pan et al., Rare Metal Mat. Eng. 48, 0033–0038 (2019)

    Google Scholar 

  32. L. del Campo, R.B. Pérez-Sáez, X. Esquisabel et al., Rev. Sci. Instrum. 77, 113111 (2006). https://doi.org/10.1063/1.2393157

    Article  ADS  Google Scholar 

  33. A. Adibekyan, C. Monte, M. Kehrt et al., Int. J. Thermophys. 36, 283–289 (2015). https://doi.org/10.1007/s10765-014-1745-7

    Article  ADS  Google Scholar 

  34. M. Rydzek, T. Stark, M. Arduini-Schuster, et al. Journal of Physics: Conference Series, IOP Publishing, 012152 (2012). https://doi.org/10.1088/1742-6596/395/1/012152

  35. J. Ishii, A. Ono, Meas. Sci. Technol. 12, 2103–2112 (2001). http://iopscience.iop.org/0957-0233/12/12/311

  36. L. Kirkup, R.B. Frenkel, New York: United States of America by Cambridge University Press. 2006, p. 50. https://doi.org/10.1017/CBO9780511755538.016

Download references

Funding

This work was supported by the National Science Foundation of China (62305107, 62075058), Innovation Scientists and Technicians Troop Construction Projects of Henan Province (22400051007), National Science Foundation of Henan province (222300420011), Key Technology Research and Development Program of Henan Province (222102220078), Outstanding Youth Foundation of Henan Normal University (2020JQ02), Program for Innovative Research Team (in Science and Technology) in University of Henan Province(Grant No. 23IRTSTHN013), Key Scientific Research Project of Higher Education Institutions in Henan Province (23A140002).

Author information

Authors and Affiliations

Authors

Contributions

WLW performed the experiment, prepared the figures and tables, and wrote the manuscript text. ZYY contributed to investigation, reviewing of the manuscript. LFL, KY, and YFL contributed to supervision, project administration, funding acquisition, and reviewing, and editing of the manuscript.

Corresponding authors

Correspondence to Longfei Li or Yufang Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical Approval

Not applicable.

Additional information

Communicated by Boris Wilthan.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1112 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Li, L., Yu, K. et al. Infrared Directional Spectral Emissivity of Tungsten-Copper Alloy in the 400–700 ℃ Temperature Range. Int J Thermophys 45, 51 (2024). https://doi.org/10.1007/s10765-024-03345-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-024-03345-z

Keywords

Navigation