Skip to main content
Log in

Ecological-niche modeling of the gall midge Psectrosema tamaricum and its host plant Tamarix nilotica in Egypt

  • Original Research Article
  • Published:
International Journal of Tropical Insect Science Aims and scope Submit manuscript

Abstract

The gall-midge Psectrosema tamaricum (Kieffer 1912) (Diptera: Cecidomyiidae) forms small ovoid or fusiform swelling galls on the leaf branches and flowering shoots of Tamarix nilotica (Ehrenb.) (Family: Tamaricaceae). The present work studies the interaction of P. tamaricum with T. nilotica. It is an attempt to predict the potential current distribution of P. tamaricum and the host plant T. nilotica in Egypt using ecological-niche modeling.; in addition to the effect of altitude and vegetation cover on its distribution. Within the study areas, the number of galls per plant and plant cover had a significant positive correlation. There was no statistically significant relationship between the number of galls per plant and elevation. Temperature, elevation, and relative humidity were the strongest determinants of P. tamaricum potential distribution. Precipitation, soil types, and temperature were the most significant predictors for the potential distribution of T. nilotica. The present study suggests that gall-forming insects prefer larger plants to small plants. The present study reported that the highly suitable habitat for P. tamaricum is lower than for T. nilotica by 93.4% of the total highly suitable area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of data and material

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

Alt :

“Altitude”

AUC :

“The area under the curve”

m. a. s. l :

“Meters above sea level”

MaxEnt :

“The maximum entropy modeling technique.”

P :

“Probability”

ROC :

“The receiver operating characteristic.”

r s :

“The Spearman rank correlation coefficient.”

Sig. :

“Significant.

References

  • Abdelaal M, Fois M, Fenu G, Bacchetta G (2019) Using MaxEnt modeling to predict the potential distribution of the endemic plant Rosa arabica Crép. in Egypt. Eco Inform 50:68–75

    Google Scholar 

  • Abdelgawad AA (2017) Tamarix nilotica (ehrenb) bunge: A review of phytochemistry and pharmacology. J Microb Biochem Technol 9:544–553

    CAS  Google Scholar 

  • Allison SD, Schultz JC (2005) Biochemical responses of chestnut oak to a galling cynipid. J Chem Ecol 31:151–166

    CAS  PubMed  Google Scholar 

  • Araújo APA, de Paula JDA, Carneiro MAA, Schoereder JH (2006a) Effects of host plant architecture on colonization by galling insects. Austral Ecol 31:343–348

    Google Scholar 

  • Araújo MB, Thuiller W, Pearson RG (2006b) Climate warming and the decline of amphibians and reptiles in Europe. J Biogeogr 33:1712–1728

    Google Scholar 

  • Arriola ÍA, Isaias R (2015) Questioning the environmental stress hypothesis for gall diversity of restinga vegetation on dunes. Rev Biol Trop 63:959–970

    Google Scholar 

  • Arriola ÍA, de Melo Júnior JC, da Silva Mouga DM, dos Santos Isaias RM, Costa EC (2016) Where host plant goes, galls go too: new records of the Neotropical galling Cecidomyiidae (Diptera) associated with Calophyllum brasiliense Cambess (Calophyllaceae). Check List 12:1924

    Google Scholar 

  • Ascendino S, Maia VC (2018) Insects galls of Pantanal areas in the State of Mato Grosso do Sul, Brazil: characterization and occurrence. An Acad Bras Ciênc 90:543–1564

    Google Scholar 

  • Barbosa P, Wagner MR (1989) Introduction to forest and shade tree insects. Academic Press, San Diego, 150-167. https://doi.org/10.1016/B978-0-12-078146-1.50011-0

  • Blackburn JK, Matakarimov S, Kozhokeeva S, Tagaeva Z, Bell LK, Kracalik IT, Zhunushov A (2017) Modeling the ecological niche of Bacillus anthracis to map anthrax risk in Kyrgyzstan. Am J Trop Med Hyg 96:550

    PubMed  PubMed Central  Google Scholar 

  • Boulos L (1999) Flora of Egypt, vol 1. Egypt, Al hadara publishing, Cairo

    Google Scholar 

  • Boulos L (2000) Flora of Egypt, vol 2. Egypt, Al hadara publishing, Cairo

    Google Scholar 

  • Boulos L (1995) Flora of Egypt: a checklist. Al-Hadara Publishing, Cairo, 354

  • Brown G, Mies BA (2012) Flora and biogeography. In: Vegetation Ecology of Socotra. Plant and Vegetation, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4141-6_4

  • Chaudhary SA (2001) Flora of the Kingdom of the Saudi Arabia, Vol. II. Ministry of Agriculture and Water, Riyadh 342-354

  • Costa K, Araújo W (2019) Distribution of gall-inducing arthropods in areas of deciduous seasonal forest of Parque da Sapucaia (Montes Claros, MG, Brazil): Effects of anthropization, vegetation structure and seasonality. Pap Avulsos Zool 59:e20195931

    Google Scholar 

  • de Araújo CB, Marcondes-Machado LO, Costa GC (2014) The importance of biotic interactions in species distribution models: a test of the Eltonian noise hypothesis using parrots. J Biogeogr 41:513–523

    Google Scholar 

  • Doğanlar M, Elsayed AK (2013) Parasitoids complex of Asphondylia conglomerata De STEFANI (Diptera: Cecidomyiidae) on the Mediterranean Saltbush, Atriplex halimus L. (Chenopodiaceae) in Egypt, with descriptions of new species from Eulophidae and Torymidae (Hymenoptera: Chalcidoidea). Linz Biol Beitr 45:1799–1811

    Google Scholar 

  • Dreger-Jauffret F (1992) Diversity of gall-inducing insects and their galls. In: Rohfritsch O (ed) JD Shorthouse. Biology of insect-induced galls. Oxford University Press, Oxford, UK, pp 8–33

    Google Scholar 

  • Egan SP, Ott JR (2007) Host plant quality and local adaptation determine the distribution of a gall-forming herbivore. Ecology 88:2868–2879

    PubMed  Google Scholar 

  • El-Ghareeb R, Rezk MR (1989) A preliminary study on the vegetation of the Mediterranean coastal land at Bousseli(Egypt). J U Kuwait (science) Kuwait 16:115–128

    Google Scholar 

  • El-Morsy MHM (2010) Relative importance of salt marshes as range resources in the north western Mediterranean coast of Egypt. J Phytol 2:3

    Google Scholar 

  • Elsayed AK, Skuhrava M, Karam HH, Elminshawy A, Al-Eryan MA (2015) New records and new species of gall midges (Diptera: Cecidomyiidae) developing on Chenopodiaceae in Egypt. Zootaxa 3904:105–115

    PubMed  Google Scholar 

  • Elsayed AK, Karam HH, Tokuda M (2017) A new Gephyraulus species (Diptera: Cecidomyiidae) inducing flower bud galls on the European sea rocket Cakile maritima Scop. (Brassicaceae). Appl Entomol Zool 52:553–558

    CAS  Google Scholar 

  • Elsayed AK, Karam HH (2016) Behaviour-Verhalten. Stud Dipterol 23:265–266

    Google Scholar 

  • Feeny P (1975) Biochemical coevolution between plants and their insect herbivores. Coevolution of Animals and Plants. University of Texas Press, Austin, Journal of Animal Ecology 13:1–8

    Google Scholar 

  • Fernandes GW, Almada ED, Carneiro MAA (2010) Gall-Inducing Insect Species Richness as Indicators of Forest Age and Health. Environ Entomol 39:134–1140

    Google Scholar 

  • Fernandes SPC, Castelo-Branco BP, Albuquerque FA, Brito-Ramos AB, Ferreira ALN, Braga DVV, Almeida-Cortez JS (2009) Galhas entomógenas em um fragmento urbano de Mata Atlântica no centro de endemismo de Pernambuco. Revista Brasileira de Biociências 7(3)

  • Fick SE, Hijmans RJ (2017) WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol 37:4302–4315

    Google Scholar 

  • Fritz RS, Gaud WS, Sacchi CF, Price PW (1987) Patterns of intra-and interspecific association of gall-forming sawflies in relation to shoot size on their willow host plant. Oecologia 73:159–169

    CAS  PubMed  Google Scholar 

  • Gagné RJ, Jaschhof M (2004) A catalog of the Cecidomyiidae (Diptera) of the world (Vol. 25, pp. 1–408). Washington, DC, USA: Entomological Society of Washington

  • Gerling D, Kugler J, Lupo A (1976) The galls of insects and mites that occur on Tamarix spp. Israel and the Sinai. Bollettino del Laboratorio di Entomologia Agraria “Filippo Silvestri” di Portici 33:53–79

  • Harris KM (1983) Descriptions of Psectrosema spp. (Diptera: Cecidomyiidae) reared from galls on Tamarix spp. in Pakistan, including four new species. Bull Entomol Res 73:447–456

    Google Scholar 

  • Harris MO, Pitzschke A (2020) Plants make galls to accommodate foreigners: some are friends, most are foes. New Phytol 225:1852–1872

    PubMed  Google Scholar 

  • Hernandez PA, Graham CH, Master LL, Albert DL (2006) The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 29:773–785

    Google Scholar 

  • Hinz HL, Müller-Schärer H (2000) Influence of host condition on the performance of Rhopalomyia n. sp. (Diptera: Cecidomyiidae), a biological control agent for scentless chamomile. Tripleurospermum Perforatum Biological Control 18:147–156

    Google Scholar 

  • Johnson EE, Escobar LE, Zambrana-Torrelio C (2019) An ecological framework for modeling the geography of disease transmission. Trends Ecol Evol 34:655–668

    PubMed  PubMed Central  Google Scholar 

  • Julião GR, Fernandes GW, Negreiros D, Bedê L, Araújo RC (2005) Insetos Galhadores Associados a Duas Espécies De Plantas Invasoras De Áreas Urbanas e Peri-Urbanas. J Rev Bras Entomol 49:97–106

    Google Scholar 

  • Kaky E, Gilbert F (2017) Predicting the distributions of Egypt’s medicinal plants and their potential shifts under future climate change. PLoS ONE 12:e0187714

    PubMed  PubMed Central  Google Scholar 

  • Kamel M (2021) Hiking trails effects on the diversity of gall-inducing insects in high altitude ecosystem, St. Katherine Protectorate, Egypt. Zool Middle East 67:48–56

    Google Scholar 

  • Kamel M, Bream AS, Moursy MM, Ragab SH (2021) Predicting the geographic distribution habitats of Schizomyia buboniae (Diptera: Cecidomyiidae) and its host plant Deverra tortuosa (Apiaceae) in Egypt by using MaxEnt modeling. J Basic Appl Zool 82:1–13

    Google Scholar 

  • Kamel M, Semida F, Abdel-Dayem M (2012) Galls inducing insects in Sinai Ecosystem, Egypt. Gall-inducing insects and their host plants in St. Katherine Protectorate. Edited by: Kamel M., Semida F.M. and Abdel-Dayem M.S. KG Heinrich-Böcking-Straße, Germany: Lambert Academic Publishing GmbH & Co. First isbn: 978-3-659-13036-6

  • Kieffer JJ (1912) No. IV.—Hymenoptera, Proctotrupoidea. Transactions of the Linnean Society of London. 2nd Series. Zoology 15:45–80

    Google Scholar 

  • Lima VP, Calado DC (2020) Mapping the habitat suitability of Andira humilis Mart. ex Benth. (Fabaceae) as a means to detect its associated galling species in Brazil. Acta Sci Biol Sci 42:e48809–e48809

    Google Scholar 

  • Maia VC (2006) Galls of Hemiptera. Publicações Avulsas do Museu Nacional, Lepidoptera and Thysanoptera from Central and South America

    Google Scholar 

  • Migahid AM (1978) Flora of Saudi Arabia, Vols 1 & 2. Riyadh University, Riyadh

  • Moreira RG, Fernandes GW, Almada ED, Santos JC (2007) Galling insects as bioindicators of land restoration in an area of Brazilian Atlantic Forest. Lundiana: Int J Biodivers 8:107–112

    Google Scholar 

  • Nachtergaele F, van Velthuizen H, Verelst L, Batjes NH, Dijkshoorn K, van Engelen VWP, Fischer G, Jones A, Montanarela L (2010) The Harmonized World Soil Database 2010:34–37

    Google Scholar 

  • Nawwar MAM, Buddrus J, Bauer H (1982) Dimeric phenolic constituents from the roots of Tamarix nilotica. Phytochemistry 21:1755–1758

    CAS  Google Scholar 

  • Phillips S (2016) A brief tutorial on Maxent, versions: 3.3.1. Lessons in Conservation 3:108–135

    Google Scholar 

  • Phillips SJ, Anderson RP, Dudík M, Schapire RE, Blair ME (2017) Opening the black box: an open-source release of Maxent. Ecography 40:887–893

    Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259

    Google Scholar 

  • Phillips SJ, Dudík M, Schapire RE (2004) A maximum entropy approach to species distribution modeling. In Proceedings of the twenty-first international conference on Machine learning (p. 83)

  • Prado PIK, Vieira EM (1999) The interplay between plant traits and herbivore attack: a study of a stem galling midge in the neotropics. Ecol Entomol 24:80–88

    Google Scholar 

  • Price PW (2005) Adaptive radiation of gall-inducing insects. Basic Appl Ecol 6:413–421

    Google Scholar 

  • Price P, Gerling D (2004) Complex architecture of Tamarix nilotica and resource utilization by the spindle-gall moth Amblypalpis olivierella (Lepidoptera: Gelechiidae). Isr J Entomol 34:1–17

    Google Scholar 

  • Price PW (1991) The plant vigor hypothesis and herbivore attack. Oikos 244–251

  • Qi Y, Wei W, Chen C, Chen L (2019) Plant root-shoot biomass allocation over diverse biomes: A global synthesis. Glob Ecol Conserv 18:e00606

    Google Scholar 

  • Ragab SH, Kamel M, Bream AS, Moursy MM (2020a) Baldratia salicorniae–Salicornia fruticosa Interaction and Modeling of Their Habitat in Egypt By Using Maxent Technique. Egypt Acad J Biol Sci E Med Entomol Parasitol 12:27–41

    Google Scholar 

  • Ragab SH, Kamel M, Bream AS, Moursy MM (2020b) Studying the Interaction Between Asphondylia punica and Its Host Plant, Atriplex halimus, and Predicting Their Potential Geographic Distribution in Egypt by Using Maxent Technique. Egypt Acad J Biol Sci A Entomol 13:283–298

    Google Scholar 

  • Raman A, Schaefer CW, Withers TM (Eds.) (2005) Biology, ecology, and evolution of gall-inducing arthropods (Vol. 1, pp. 1-34). Enfield: Science Publishers

  • Rocha S, Branco M, Boas LV, Almeida MH, Protasov A, Mendel Z (2013) Gall induction may benefit host plant: a case of a gall wasp and eucalyptus tree. Tree Physiol 33:388–397

    CAS  PubMed  Google Scholar 

  • Roininen H, Ohgushi T, Zinovjev A, Virtanen R, Vikberg V, Matsushita K, Nakamura M, Price PW, Veteli TO (2006) Latitudinal and altitudinal patterns in species richness and mortality factors of the galling sawflies on Salix species in Japan. Springer, Galling arthropods and their associates

    Google Scholar 

  • Samy AM, Campbell LP, Peterson AT (2014) Leishmaniasis transmission: distribution and coarse-resolution ecology of two vectors and two parasites in Egypt. Rev Soc Bras Med Trop 47:57–62

    PubMed  Google Scholar 

  • Santana AP, Isaias RMDS (2014) Galling insects are bioindicators of environmental quality in a Conservation Unit J. Acta Botanica Brasilica 28:594–608

    Google Scholar 

  • Santos MG, Hanson P, Maia VC, Mehltreter K (2018) A Review of Galls on Ferns and Lycophytes. Environ Entomol 48:53–60

    Google Scholar 

  • Semida FMM (2006) Ungulate grazing impact on the local distribution of the rare species Rhopalomyia Tanaceticola karsh. (Diptera: Cecidomyiidae), In south Sinai ecosystem. Bull Entomol Soc Egypt 83:51–60

    Google Scholar 

  • Sheded MG, Ahmed MK, Hammad SA (2014) Vegetation analysis in the red sea-eastern desert ecotone at the area between Safaga and South Qusseir, Egypt. Ecol Balk 6(2)

  • Shorthouse JD, Rohfritsch O (1992) Biology of insect-induced galls, Oxford University Press, 60–86

  • Skuhravá M, Skuhravý V, Elsayed A (2014) Gall midges (Diptera: Cecidomyiidae) of Egypt: annotated list and zoogeographical analysis. Acta Soc Zool Bohem 78:241–268

    Google Scholar 

  • Skuhravá M, Skuhravý V, Kettani K (2017) Gall midges (Diptera: Cecidomyiidae) of Morocco. Acta Socs Zool Bohem 81:43–70

    Google Scholar 

  • Springuel I, El-Hadidi MN, Sheded M (1991) Plant communities in the southern part of the Eastern Desert (Arabian Desert) of Egypt. J Arid Environ 21:307–317

    Google Scholar 

  • Stone GN, Schönrogge K (2003) The adaptive significance of insect gall morphology. Trends Ecol Evol 18:512–522

    Google Scholar 

  • Tooker JF, Hanks LM (2004) Stereochemistry of host plant monoterpenes as mate location cues for the gall wasp Antistrophus rufus. J Chem Ecol 30:473–477

    CAS  PubMed  Google Scholar 

  • Vasseur DA, Delong JP, Gilbert B, Greig HS, Harley CDG, McCann KS, Savage V, Tunney TD, O’Connor MI (2014) Increased temperature variation poses a greater risk to species than climate warming. Proc Biol Sci 281(1779):20132612

    PubMed  PubMed Central  Google Scholar 

  • Villar JL, Alonso MA, Juan A, Crespo MB (2015) Remarks on typification of nineteen names in Tamarix (Tamaricaceae). Nord J Bot 33:591–600

    Google Scholar 

  • Wang R, Li Q, He S, Liu Y, Wang M, Jiang G (2018) Modeling and mapping the current and future distribution of Pseudomonas syringae pv. actinidiae under climate change in China. PLoS ONE 13:e0192153

    PubMed  PubMed Central  Google Scholar 

  • Wei B, Wang R, Hou K, Wang X, Wu W (2018) Predicting the current and future cultivation regions of Carthamus tinctorius L. using MaxEnt model under climate change in China. Glob Ecol Conserv 16:e00477

    Google Scholar 

  • Wilson KA, Westphal MI, Possingham HP, Elith J (2005) Sensitivity of conservation planning to different approaches to using predicted species distribution data. Biol Cons 122:99–112

    Google Scholar 

  • Worthington TA, Zhang T, Logue DR, Mittelstet AR, Brewer SK (2016) Landscape and flow metrics affecting the distribution of a federally-threatened fish: Improving management, model fit, and model transferability. Ecol Model 342:1–18

    Google Scholar 

  • Yamazaki K, Ohsaki N (2006) Willow leaf traits affecting host use by the leaf-gall-forming sawfly. Popul Ecol 48:363–371

    Google Scholar 

  • Zahran MA, Willis AJ (2008) The vegetation of Egypt (Vol. 2). Springer Science & Business Media

  • Zahran MA, Willis AJ (2009) The Western Desert. In: Zahran MA, Willis AJ (eds) The Vegetation of Egypt. Dordrecht: Springer Netherlands

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

MK & SHR collected the data, MK analyzed the results, and MK & SHR interpreted Ecological-niche modeling of the gall midge Psectrosema tamaricum and its host plant Tamarix nilotica in Egypt. MK was a major contributor to writing the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mohamed Kamel.

Ethics declarations

Ethics approval and consent to participate

“Not applicable”.

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamel, M., Ragab, S.H. Ecological-niche modeling of the gall midge Psectrosema tamaricum and its host plant Tamarix nilotica in Egypt. Int J Trop Insect Sci 44, 885–900 (2024). https://doi.org/10.1007/s42690-024-01163-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42690-024-01163-2

Keywords

Navigation