Skip to main content
Log in

On common index divisors and monogenity of septic number fields defined by trinomials of type \(x^7+ax^2+b\)

  • Published:
Acta Mathematica Hungarica Aims and scope Submit manuscript

Abstract

We study the index \(i(K)\) of any septic number field \(K\) generated by a root of an irreducible trinomial of type \(F(x)=x^7+ax^2+b \in \mathbb{Z}[x]\). We show that the unique prime which can divide \(i(K)\) is \(2\). Moreover, we give necessary and sufficient conditions on \(a\) and \(b\) so that \(2\) is a common index divisor of \(K\). Further, we show that \(i(K)=2\) whenever \(2\) divides \(i(K)\). In this way, we answer completely Problem \(6\) and Problem \(22\) of Narkiewicz [34] for these families of number fields. As an application of our results, if \(2\) divides \(i(K)\), then the ring \(\mathcal{O}_K\) of integers of \(K\) has no power integral basis. We illustrate our results by giving some numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Ahmad, T. Nakahara and A. Hameed, On certain pure sextic fields related to a problem of Hasse, Int. J. Algebra Comput., 26 (2016), 577–583.

  2. S. Ahmad, T, Nakahara and S. M. Husnine, Power integral bases for certain pure sextic fields, Int. J. Number Theory, 10 (2014), 2257–2265.

  3. H. Ben Yakkou, On monogenity of certain number fields defined by \(x^8 + ax + b\), Acta Math. Hungar., 166 (2022), 614–623.

  4. H. Ben Yakkou, On monogenity of certain number fields defined by \(x^2r + ax^m + b\), arXiv:2203.10413 (2022).

  5. H. Ben Yakkou, On non-monogenic number fields defined by trinomials of type \(x^{n} + ax^{m} + b\), Rocky Mountain J. Math., 53 (2023), 685–699.

  6. H. Ben Yakkou and B. Boudine, On the index of the octic number field defined by \(x^8 + a^x + b\), Acta Math. Hungar., 170 (2023), 585–607.

  7. Y. Bilu, I. Gaál and K. Győry, Index form equations in sextic fields: a hard computation, Acta Arith., 115 (2004), 85–96.

  8. A. Bérczes, J. H. Evertse and K.Győry, Multiply monogenic orders, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 12 (2013), 467–497.

  9. H. Cohen, A Course in Computational Algebraic Number Theory, Graduate Texts of Math., vol. 138, Springer-Verlag (Berlin, Heidelberg, 1993).

  10. C. T. Davis and B. K. Spearman, The index of quartic field defined by a trinomial \(x^4 + ax + b\), J. Algebra Appl., 17 (2018), 1850197, 18 pp.

  11. R. Dedekind, Über den Zusammenhang zwischen der Theorie der Ideale und der Theorie der höheren Kongruenzen, Göttingen Abhandlungen, 23 (1878), 1–23.

  12. L. El Fadil and O. Kchit, On index divisors and monogenity of certain septic number fields defined by \(x^7 + ax^3 + b\), Comm. Algebra, 51 (2023), 2349–2363.

  13. H. T. Engstrom, On the common index divisors of an algebraic number field, Trans. Amer. Math. Soc., 32 (1930), 223–237.

  14. J. H. Evertse and K. Győry, Unit Equations in Diophantine Number Theory, Cambridge Univ. Press (2015).

  15. J. H. Evertse and K. Győry, Discriminant Equations in Diophantine Number Theory, Cambridge Univ. Press (2017).

  16. I. Gaál, Diophantine Equations and Power Integral Bases, Theory and Algorithm, 2nd ed., Birkhäuser (Boston, 2019).

  17. I. Gaál, An experiment on the monogenity of a family of trinomials, JP J. Algebra Number Theory Appl., 51 (2021), 97–111.

  18. I. Gaál and K. Győry, Index form equations in quintic fields, Acta Arith., 89 (1999), 379–396.

  19. I. Gaál, A. Pethő and M. Pohst, On the resolution of index form equations in quartic number fields, J. Symbolic Comput., 16 (1993), 563–584.

  20. J. Guárdia, J. Montes and E. Nart, Higher Newton polygons in the computation of discriminants and prime ideal decomposition in number fields, J. Théor. Nombres Bordeaux, 23 (2011), 667–669.

  21. J. Guàrdia, J. Montes and E. Nart, Newton polygons of higher order in algebraic number theory, Trans. Amer. Math. Soc., 364 (2012), 361–416.

  22. K. Győry, Sur les polynômes à coefficients entiers et de discriminant donné, Acta Arith., 23 (1973), 419–426.

  23. K. Győry, Sur les polynômes à coefficients entiers et de discriminant donné III, Publ. Math. Debrecen, 23 (1976), 141–165.

  24. K. Győry, On polynomials with integer coefficients and given discriminant, IV, Publ. Math. Debrecen, 25 (1978), 155–167.

  25. K. Győry, Corps de nombres algébriques d’anneau d’entiers monogéne, in: Séminaire Delange–Pisot–Poitou, 20e année: 1978/1979. Théorie des nombres, Fasc. 2, Secr´etariat Math. (Paris, 1980), Exp. No. 26, 7 pp.

  26. K. Győry, On discriminants and indices of integers of an algebraic number field, J. Reine Angew. Math., 324 (1981), 114–126.

  27. K. Győry, Bounds for the solutions of decomposable form equations, Publ. Math. Debrecen, 52 (1998), 1–31.

  28. H. Hasse, Number Theory, Springer Verlag (Berlin, New York, 1980).

  29. K. Hensel, Arithmetische Untersuchungen ¨uber Discriminanten und ihre ausserwesentlichen Theiler, Dissertation, Univ. Berlin (1884).

  30. A. Jakhar, S. K. Khanduja and N. Sangwan, Characterization of primes dividing the index of a trinomial, Int. J. Number Theory, 13 (2017), 2505–2514.

  31. L. Jones and T. Phillips, Infinite families of monogenic trinomials and their Galois groups, Int. J. Math., 29 (2018). Article ID 1850039, 11 pp.

  32. P. Llorente and E. Nart, Effective determination of the rational primes in a cubic field, Proc. Amer. Math. Soc., 87 (1983), 579–585.

  33. J. Montes and E. Nart, On a theorem of Ore, J. Algebra, 146 (1992), 318–334.

  34. W. Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers, 3rd ed., Springer Monographs in Math., Springer-Verlag (Berlin, 2004).

  35. W. Narkiewicz, The Story of Algebraic Numbers in the First Half of the 20th Century: From Hilbert to Tate, Springer Monographs in Math., Springer (Cham, 2018).

  36. E. Nart, On the index of a number field, Trans. Amer. Math. Soc., 289 (1985), 171–183.

  37. Ø. Ore, Newtonsche Polygone in der Theorie der algebraischen Körper, Math. Ann., 99 (1928), 84–117.

  38. A. Pethő and M. Pohst, On the indices of multiquadratic number fields, Acta Arith., 153 (2012), 393–414.

  39. A. Pethő and V. Ziegler, On biquadratic fields that admit unit power integral basis, Acta Math. Hungar., 133 (2011), 221–241.

  40. E. Żyliński, Zur Theorie der außerwesentlichen Diskriminantenteiler algebraischer Körper, Math. Ann., 73 (1913), 273–274.

Download references

Acknowledgements

I am grateful to the anonymous referee, whose valuable comments, important suggestions and precious remarks have tremendously improved the quality of this paper. I thank Professor Kálmán Győry for inspiring and insightful conversations about the general topic of this article. I thank him for encouragement, advice and guidance. Also, I thank Professor Lhoussain El Fadil who introduced me to work on monogenity of number fields.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Ben Yakkou.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben Yakkou, H. On common index divisors and monogenity of septic number fields defined by trinomials of type \(x^7+ax^2+b\). Acta Math. Hungar. 172, 378–399 (2024). https://doi.org/10.1007/s10474-024-01409-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10474-024-01409-y

Key words and phrases

Mathematics Subject Classification

Navigation