Skip to main content
Log in

A primer on eigenvalue problems of non-self-adjoint operators

  • Published:
Analysis and Mathematical Physics Aims and scope Submit manuscript

Abstract

Non-self adjoint operators describe problems in science and engineering that lack symmetry and unitarity. They have applications in convection–diffusion processes, quantum mechanics, fluid mechanics, optics, wave-guide theory, and other fields of physics. This paper reviews some important aspects of the eigenvalue problems of non-self-adjoint differential operators and discusses the spectral properties of various non-self-adjoint differential operators. Their eigenvalues can be computed for ground and perturbed states by their spectra and pseudospectra. This work also discusses the contemporary results on the finite number of eigenvalues of non-self-adjoint operators and the implications it brings in modeling physical problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availibility

Statement Data sharing is not applicable to this article as no datasets were generated or analyzed during the preparation of the paper.

References

  1. Locker, J.: Eigenvalues and Completeness for Regular and Simply Irregular Two-Point Differential Operators. American Mathematical Soc. (2008)

  2. Manzetti, S.: Derivation and numerical analysis of an attenuation operator for non-relativistic waves. Sci. Rep. 8(1), 16572 (2018)

    Google Scholar 

  3. Pitaevskii, L.P.: Vortex lines in an imperfect bose gas. Sov. Phys. JETP 13(2), 451–454 (1961)

    MathSciNet  Google Scholar 

  4. Gross, E.P.: Structure of a quantized vortex in boson systems. Il Nuovo Cimento (1955–1965) 20(3), 454–477 (1961)

    MathSciNet  Google Scholar 

  5. Manzetti, S., Trounev, A.: Supersymmetric Hamiltonian and vortex formation model in a quantum nonlinear system in an inhomogeneous electromagnetic field. Adv. Theory Simul. 2(5), 1900011 (2019)

    Google Scholar 

  6. Manzetti, S.: Applied quantum physics for novel quantum computation approaches: an update. Comput. Math. Model. 29(2), 244–251 (2018)

    MathSciNet  Google Scholar 

  7. Manzetti, S.: Mathematical modeling of rogue waves: a survey of recent and emerging mathematical methods and solutions. Axioms 7(2), 42 (2018)

    MathSciNet  Google Scholar 

  8. Manzetti, S., Trounev, A.: Analytical solutions for a supersymmetric wave-equation for quasiparticles in a quantum system. Adv. Theory Simul. 3(1), 1900173 (2020)

    Google Scholar 

  9. Manzetti, S., Trounev, A.: Electromagnetic vorticity in a square-well crystal system described by a supersymmetric wave-equation. Adv. Theory Simul. 3(1), 1900186 (2020)

    Google Scholar 

  10. Trefethen, L.N., Bau, D.: Numerical Linear Algebra. SIAM (1997)

  11. Trefethen, L.N.: Pseudospectra of linear operators. SIAM Rev. 39(3), 383–406 (1997)

    MathSciNet  Google Scholar 

  12. Davies, E.B.: Pseudospectra of differential operators. J. Oper. Theory 43(2), 243–262 (2000)

    MathSciNet  Google Scholar 

  13. Moiseyev, N.: Quantum theory of resonances: calculating energies, widths and cross-sections by complex scaling. Phys. Rep. 302(5–6), 212–293 (1998)

    Google Scholar 

  14. Moiseyev, N.: Derivations of universal exact complex absorption potentials by the generalized complex coordinate method. J. Phys. B: At. Mol. Opt. Phys. 31(7), 1431 (1998)

    Google Scholar 

  15. Kurasov, P.B., Scrinzi, A., Elander, N.: \(\delta \)’potential arising in exterior complex scaling. Phys. Rev. A 49(6), 5095 (1994)

    Google Scholar 

  16. Morgan, J.D., Simon, B.: The calculation of molecular resonances by complex scaling. J. Phys. B: At. Mol. Phys. 14(5), 167 (1981)

    MathSciNet  Google Scholar 

  17. Zhang, L., Zu, J.W., Hou, Z.: Complex modal analysis of non-self-adjoint hybrid serpentine belt drive systems. J. Vib. Acoust. 123(2), 150–156 (2001)

    Google Scholar 

  18. Sjöstrand, J., Zworski, M.: The complex scaling method for scattering by strictly convex obstacles. Ark. Mat. 33(1), 135–172 (1995)

    MathSciNet  Google Scholar 

  19. Evans, W.D.: On the unique self-adjoint extension of the dirac operator and the existence of the green matrix. Proc. Lond. Math. Soc. 3(3), 537–557 (1970)

    MathSciNet  Google Scholar 

  20. Kasparov, G.G.: The operator k-functor and extensions of c\(^*\)-algebras. Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya 44(3), 571–636 (1980)

    MathSciNet  Google Scholar 

  21. Edmunds, D., Evans, W.D.: Spectral Theory and Differential Operators. Oxford University Press (2018)

  22. Evans, W.D., Knowles, I.: On the extension problem for accretive differential operators. J. Funct. Anal. 63(3), 276–298 (1985)

    MathSciNet  Google Scholar 

  23. Jorgensen, P.E.T.: Operators and Representation Theory: Canonical Models for Algebras of Operators Arising in Quantum Mechanics. Elsevier (1987)

  24. Bagrov, V.G., Samsonov, B.F.: Darboux transformation of the Schrödinger equation. Phys. Part. Nucl. 28(4), 474 (1997)

    Google Scholar 

  25. Kurnaz, A., Oturanc, G., Kiris, M.E.: n-dimensional differential transformation method for solving PDEs. Int. J. Comput. Math. 82(3), 369–380 (2005)

    MathSciNet  Google Scholar 

  26. Fokas, A.S.: A unified transform method for solving linear and certain nonlinear PDEs. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 453(1962), 1411–1443 (1997)

    MathSciNet  Google Scholar 

  27. Polyanin, A.D., Zhurov, A.I.: Unsteady axisymmetric boundary-layer equations: transformations, properties, exact solutions, order reduction and solution method. Int. J. Non-Linear Mech. 74, 40–50 (2015)

    Google Scholar 

  28. Polyanin, A.D., Zhurov, A.I.: On RF-pairs, Bäcklund transformations and linearization of nonlinear equations. Commun. Nonlinear Sci. Numer. Simul. 17(2), 536–544 (2012)

    MathSciNet  Google Scholar 

  29. Hirota, R., Satsuma, J.: Nonlinear evolution equations generated from the Bäcklund transformation for the Boussinesq equation. Progress Theoret. Phys. 57(3), 797–807 (1977)

    MathSciNet  Google Scholar 

  30. Weyl, H.: Über die asymptotische verteilung der eigenwerte. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse 1911, 110–117 (1911)

    Google Scholar 

  31. Agmon, S.: Lectures on Exponential Decay of Solutions of Second-Order Elliptic Equations: Bounds on Eigenfunctions of N-Body Schrodinger operations.(MN-29). Princeton University Press (2014)

  32. Gasymov, M.G., Zhikov, V.V., Levitan, B.M.: Conditions for the negative spectrum of the Schrodinger equation operator to be discrete and finite. Math. Notes Acad. Sci. USSR 2(5), 813–817 (1967)

    Google Scholar 

  33. Pavlov, B.S.: The Nonself-Adjoint Schrödinger Operator. Springer (1967)

  34. Tunca, G.B., Bairamov, E.: Discrete spectrum and principal functions of non-selfadjoint differential operator. Czechoslov. Math. J. 49(4), 689–700 (1999)

    MathSciNet  Google Scholar 

  35. Demuth, M., Hansmann, M., Katriel, G.: Eigenvalues of non-self-adjoint operators: a comparison of two approaches. In: Mathematical Physics, Spectral Theory and Stochastic Analysis, pp. 107–163 (2013)

  36. Demuth, M., Hanauska, F., Hansmann, M., Katriel, G.: Estimating the number of eigenvalues of linear operators on Banach spaces. J. Funct. Anal. 268(4), 1032–1052 (2015)

    MathSciNet  Google Scholar 

  37. Mutlu, G., Arpat, E.K.: Spectral properties of non-selfadjoint Strum–Liouville operator equation on the real axis. Hacettepe J. Math. Stat. 49(5), 1686–1694 (2020)

    MathSciNet  Google Scholar 

  38. Trefethen, L.N.: Spectra and Pseudospectra. Springer (1999)

  39. Davies, E.B.: Linear Operators and Their Spectra. Cambridge University Press (2007)

  40. Kirillov, O.N.: Non-conservative Stability Problems of Modern Physics. Walter de Gruyter (2013)

  41. Wang, Z., Wu, H.: Dissipative non-self-adjoint Sturm–Liouville operators and completeness of their eigenfunctions. J. Math. Anal. Appl. 394(1), 1–12 (2012)

    MathSciNet  Google Scholar 

  42. Bebiano, N., da Providência, J.: Non-self-adjoint operators with real spectra and extensions of quantum mechanics. J. Math. Phys. 60(1), 012104 (2019)

    MathSciNet  Google Scholar 

  43. Kreyszig, E.: Introductory Functional Analysis with Applications. Wiley, New York (1978)

    Google Scholar 

  44. Helffer, B.: Spectral Theory and Its Applications. Cambridge University Press (2013)

  45. Trefethen, L.N., Embree, M.: Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators. Princeton University Press (2005)

  46. Amrein, W.O., Hinz, A.M., Pearson, D.B.: Sturm–Liouville Theory: Past and Present. Springer (2005)

  47. Coddington, E.A., Levinson, N.: Theory of Ordinary Differential Equations. Tata McGraw-Hill Education (1972)

  48. Davies, E.B.: Non-self-adjoint differential operators. Bull. Lond. Math. Soc. 34(5), 513–532 (2002)

    MathSciNet  Google Scholar 

  49. Reddy, S.C., Trefethen, L.N.: Pseudospectra of the convection-diffusion operator. SIAM J. Appl. Math. 54(6), 1634–1649 (1994)

    MathSciNet  Google Scholar 

  50. Wright, T.G., Trefethen, L.N.: Eigtool. Software available at http://www.comlab.ox.ac.uk/pseudospectra/eigtool (2002)

  51. Redparth, P.: Spectral properties of non-self-adjoint operators in the semi-classical regime. J. Diff. Equ. 177(2), 307–330 (2001)

    MathSciNet  Google Scholar 

  52. Lenhoff, A.M.: Computation of the eigenvalues of a class of non-self-adjoint operators. SIAM J. Appl. Math. 45(3), 360–368 (1985)

    MathSciNet  Google Scholar 

  53. Valeev, N.F.: On localization of the spectrum of non-self-adjoint differential operators. J. Math. Sci. 150(6), 2460–2466 (2008)

    MathSciNet  Google Scholar 

  54. Reddy, S.C., Schmid, P.J., Henningson, D.S.: Pseudospectra of the Orr-Sommerfeld operator. SIAM J. Appl. Math. 53(1), 15–47 (1993)

    MathSciNet  Google Scholar 

  55. Davies, E.B.: Pseudo-spectra, the harmonic oscillator and complex resonances. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 455(1982), 585–599 (1999)

    MathSciNet  Google Scholar 

  56. Kumar, R., Hiremath, K.R.: Non-self-adjointness of bent optical waveguide eigenvalue problem. J. Math. Anal. Appl. 512(1), 126024 (2022)

    MathSciNet  Google Scholar 

  57. Joly, P., Poirier, C.: Mathematical analysis of electromagnetic open waveguides. ESAIM: Math. Modell. Numer. Anal. 29(5), 505–575 (1995)

    MathSciNet  Google Scholar 

  58. Hunsperger, R.G.: Integrated Optics. Springer (1995)

  59. Grebenkov, D.S., Helffer, B., Henry, R.: The complex airy operator on the line with a semipermeable barrier. SIAM J. Math. Anal. 49(3), 1844–1894 (2017)

    MathSciNet  Google Scholar 

  60. Grebenkov, D.S., Helffer, B.: On spectral properties of the Bloch-Torrey operator in two dimensions. SIAM J. Math. Anal. 50(1), 622–676 (2018)

    MathSciNet  Google Scholar 

  61. Novak, R.: On the pseudospectrum of the harmonic oscillator with imaginary cubic potential. Int. J. Theor. Phys. 54(11), 4142–4153 (2015)

    MathSciNet  Google Scholar 

  62. Caliceti, E., Graffi, S., Maioli, M.: Perturbation theory of odd anharmonic oscillators. Commun. Math. Phys. 75(1), 51–66 (1980)

    MathSciNet  Google Scholar 

  63. Trefethen, L.N.: Spectral Methods in MATLAB. SIAM (2000)

  64. Frank, R.L., Laptev, A., Safronov, O.: On the number of eigenvalues of Schrödinger operators with complex potentials. J. Lond. Math. Soc. 94(2), 377–390 (2016)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

Rakesh Kumar acknowledges the support of the CSIR fellowship for his Ph.D. work.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this work and reviewed the manuscript.

Corresponding author

Correspondence to Rakesh Kumar.

Ethics declarations

Conflict of interest

The authors declare that they do not have any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R., Hiremath, .R. & Manzetti, S. A primer on eigenvalue problems of non-self-adjoint operators. Anal.Math.Phys. 14, 21 (2024). https://doi.org/10.1007/s13324-024-00881-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13324-024-00881-7

Keywords

Navigation