Skip to main content
Log in

An arithmetic and geometric mean-based multi-objective moth-flame optimization algorithm

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Expanding the capacity of optimization algorithms for simultaneous optimization of multiple competing objectives is a crucial aspect of research. This study presents MnMOMFO, a novel non-dominated sorting (NDS) and crowding distance (CD)-based multi-objective variant of the moth-flame optimization (MFO) algorithm for multi-objective optimization problems. The algorithm incorporates arithmetic and geometric mean concepts to address MFO’s limitations and to improve its performance. Subsequently, we extend this enhanced MFO into a multi-objective variant, leveraging NDS and CD strategies to achieve a well-distributed Pareto optimal front. The effectiveness of the proposed MnMOMFO algorithm is rigorously evaluated across three distinct phases. In the initial phase, we scrutinize its performance on four ZDT multi-objective optimization problems, employing four performance metrics—general distance, inverted general distance, spacing, and spread metric. Comparative analyses with select competitive multi-objective optimization algorithms comprehensively understand MnMOMFO’s efficacy. Secondly, 24 complex multi-objective IEEE CEC 2020 test suits are considered on two performance metrics. Namely, Pareto sets proximity and the inverted generational distance in decision space. In the third phase, five real-world engineering problems are considered to measure the problem-solving ability of the MnMOMFO algorithm. The results from the experiments indicated that the MnMOMFO was the best candidate algorithm, achieving more than 95% superior results for multi-objective ZDT benchmark problems, IEEE CEC 2020 test functions, and real-life issues in contrast to several other algorithms. The experimental outcomes substantiate MnMOMFO’s superiority, establishing it as a robust and efficient algorithm for multi-objective optimization challenges with broad applicability to real-world engineering problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Algorithm 1
Algorithm 2
Algorithm 3
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

Since no datasets were created or analysed over the course of this investigation, data sharing is not relevant to this article.

References

  1. Mavrotas, G.: Effective implementation of the ε-constraint method in multi-objective mathematical programming problems. Appl. Math. Comput. 213(2), 455–465 (2009)

    Article  MathSciNet  Google Scholar 

  2. Coello, C.C.: Evolutionary multi-objective optimization: a historical view of the field. IEEE Comput. Intell. Mag. 1(1), 28–36 (2006)

    Article  Google Scholar 

  3. Abido, M.A.: A novel multiobjective evolutionary algorithm for environmental/economic power dispatch. Electric Power Syst. Res. 65(1), 71–81 (2003)

    Article  Google Scholar 

  4. Gong, D., Sun, J., Ji, X.: Evolutionary algorithms with preference polyhedron for interval multi-objective optimization problems. Inf. Sci. 233, 141–161 (2013)

    Article  MathSciNet  Google Scholar 

  5. Agrawal, S., Panigrahi, B.K., Tiwari, M.K.: Multiobjective particle swarm algorithm with fuzzy clustering for electrical power dispatch. IEEE Trans. Evol. Comput. 12(5), 529–541 (2008)

    Article  Google Scholar 

  6. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  7. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1(1), 67–82 (1997)

    Article  Google Scholar 

  8. Zitzler, E.: Evolutionary algorithms for multiobjective optimization: Methods and applications. Shaker, Ithaca (1999)

    Google Scholar 

  9. Srinivas, N., Deb, K.: Muiltiobjective optimization using nondominated sorting in genetic algorithms. Evol. Comput. 2(3), 221–248 (1994)

    Article  Google Scholar 

  10. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

    Article  Google Scholar 

  11. Knowles, J., Corne, D.: The pareto archived evolution strategy: a new baseline algorithm for pareto multiobjective optimisation. In: Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), vol. 1, pp. 98–105. IEEE, New York (1999)

  12. Abbass, H.A., Sarker, R., Newton, C.: PDE: a pareto-frontier differential evolution approach for multi-objective optimization problems. In: Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No. 01TH8546), vol. 2, pp. 971–978. IEEE, New York (2001)

  13. Holland John, H.: Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor (1975)

    Google Scholar 

  14. Dorigo, M.: Optimization, learning and natural algorithms. Politecnico Di Milano, Milan (1992)

    Google Scholar 

  15. Farmer, J.D., Packard, N.H., Perelson, A.S.: The immune system, adaptation, and machine learning. Phys. D 22(1–3), 187–204 (1986)

    Article  MathSciNet  Google Scholar 

  16. Storn, R., Price, K.: Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11(4), 341 (1997)

    Article  MathSciNet  Google Scholar 

  17. Passino, K.M.: Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control. Syst. Mag. 22(3), 52–67 (2002)

    Article  Google Scholar 

  18. Eusuff, M.M., Lansey, K.E.: Optimization of water distribution network design using the shuffled frog leaping algorithm. J. Water Resour. Plan. Manag. 129(3), 210–225 (2003)

    Article  Google Scholar 

  19. Kennedy, J., Eberhart, R.: Particle swarm optimization. Proc. ICNN Int. Conf. Neural Netw. 4, 1942–1948 (1995)

    Article  Google Scholar 

  20. Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J. Global Optim. 39, 459–471 (2007)

    Article  MathSciNet  Google Scholar 

  21. Simon, D.: Biogeography-based optimization. IEEE Trans. Evol. Comput. 12(6), 702–713 (2008)

    Article  Google Scholar 

  22. Rashedi, E., Nezamabadi-Pour, H., Saryazdi, S.: GSA: a gravitational search algorithm. Inf. Sci. 179(13), 2232–2248 (2009)

    Article  Google Scholar 

  23. Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014)

    Article  Google Scholar 

  24. Mirjalili, S.: Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl.-Based Syst. 89, 228–249 (2015)

    Article  Google Scholar 

  25. Abdollahzadeh, B., Soleimanian Gharehchopogh, F., Mirjalili, S.: Artificial gorilla troops optimizer: a new nature-inspired metaheuristic algorithm for global optimization problems. Int. J. Intell. Syst. 36(10), 5887–5958 (2021)

    Article  Google Scholar 

  26. Oyelade, O.N., Ezugwu, A.E.: Immunity-based Ebola optimization search algorithm for minimization of feature extraction with reduction in digital mammography using CNN models. Sci. Rep. 12(1), 17916 (2022)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rao, R.V., Savsani, V.J., Vakharia, D.P.: Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput. Aided Des. 43(3), 303–315 (2011)

    Article  Google Scholar 

  28. Abualigah, D., Abualigah, L., Diabat, A., Mirjalili, S., Abd, E.M., Gandomi, A.H.: The arithmetic optimization algorithm. Comput. Methods Appl. Mech. Eng. 376(10), 1016 (2021)

    MathSciNet  Google Scholar 

  29. Azizi, M., Talatahari, S., Gandomi, A.H.: Fire Hawk optimizer: a novel metaheuristic algorithm. Artif. Intell. Rev. 56(1), 287–363 (2023)

    Article  Google Scholar 

  30. Ezugwu, A.E., Agushaka, J.O., Abualigah, L., Mirjalili, S., Gandomi, A.H.: Prairie dog optimization algorithm. Neural Comput. Appl. 34(22), 20017–20065 (2022)

    Article  Google Scholar 

  31. Ahmadianfar, I., Heidari, A.A., Noshadian, S., Chen, H., Gandomi, A.H.: INFO: an efficient optimization algorithm based on weighted mean of vectors. Expert Syst. Appl. 195, 116516 (2022)

    Article  Google Scholar 

  32. Garg, V., Deep, K.: Performance of Laplacian biogeography-based optimization algorithm on CEC 2014 continuous optimization benchmarks and camera calibration problem. Swarm Evol. Comput. 27, 132–144 (2016)

    Article  Google Scholar 

  33. Zamani, H., Nadimi-Shahraki, M.H., Gandomi, A.H.: QANA: quantum-based avian navigation optimizer algorithm. Eng. Appl. Artif. Intell. 104, 104314 (2021)

    Article  Google Scholar 

  34. Zamani, H., Nadimi-Shahraki, M.H., Gandomi, A.H.: Starling murmuration optimizer: a novel bio-inspired algorithm for global and engineering optimization. Comput. Methods Appl. Mech. Eng. 392, 114616 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  35. Houssein, E.H., Oliva, D., Samee, N.A., Mahmoud, N.F., Emam, M.M.: Liver cancer algorithm: a novel bio-inspired optimizer. Comput. Biol. Med. 165, 107389 (2023)

    Article  PubMed  Google Scholar 

  36. Nama, S., Saha, A.K., Sharma, S.: A novel improved symbiotic organisms search algorithm. Comput. Intell. 38(3), 947–977 (2022)

    Article  Google Scholar 

  37. Sharma, S., Chakraborty, S., Saha, A.K., Nama, S., Sahoo, S.K.: mLBOA: a modified butterfly optimization algorithm with lagrange interpolation for global optimization. J. Bionic Eng. 19(4), 1161–1176 (2022)

    Article  Google Scholar 

  38. Nama, S., Saha, A.: An ensemble symbiosis organisms search algorithm and its application to real world problems. Decision Sci. Lett. 7(2), 103–118 (2018)

    Article  Google Scholar 

  39. Sharma, S., Saha, A.K., Roy, S., Mirjalili, S., Nama, S.: A mixed sine cosine butterfly optimization algorithm for global optimization and its application. Cluster Comput. (2022). https://doi.org/10.1007/s10586-022-03649-5

    Article  Google Scholar 

  40. Chakraborty, P., Nama, S., Saha, A.K.: A hybrid slime mould algorithm for global optimization. Multimed. Tools Appl. 2022, 1–27 (2022)

    Google Scholar 

  41. Chakraborty, S., Saha, A.K., Sharma, S., Sahoo, S.K., Pal, G.: Comparative performance analysis of differential evolution variants on engineering design problems. J. Bionic Eng. 19(4), 1140–1160 (2022)

    Article  PubMed  PubMed Central  Google Scholar 

  42. Nadimi-Shahraki, M.H., Zamani, H., Fatahi, A., Mirjalili, S.: MFO-SFR: an enhanced moth-flame optimization algorithm using an effective stagnation finding and replacing strategy. Mathematics 11(4), 862 (2023)

    Article  Google Scholar 

  43. Coello, C.A.C., Pulido, G.T., Lechuga, M.S.: Handling multiple objectives with particle swarm optimization. IEEE Trans. Evol. Comput. 8(3), 256–279 (2004)

    Article  Google Scholar 

  44. Mirjalili, S., Jangir, P., Saremi, S.: Multi-objective ant lion optimizer: a multi-objective optimization algorithm for solving engineering problems. Appl. Intell. 46, 79–95 (2017)

    Article  Google Scholar 

  45. Premkumar, M., Jangir, P., Sowmya, R., Alhelou, H.H., Heidari, A.A., Chen, H.: MOSMA: multi-objective slime mould algorithm based on elitist non-dominated sorting. IEEE Access 9, 3229–3248 (2020)

    Article  Google Scholar 

  46. Houssein, E.H., Mahdy, M.A., Shebl, D., Manzoor, A., Sarkar, R., Mohamed, W.M.: An efficient slime mould algorithm for solving multi-objective optimization problems. Expert Syst. Appl. 187, 115870 (2022)

    Article  Google Scholar 

  47. Houssein, E.H., Çelik, E., Mahdy, M.A., Ghoniem, R.M.: Self-adaptive equilibrium optimizer for solving global, combinatorial, engineering, and multi-objective problems. Expert Syst. Appl. 195, 116552 (2022)

    Article  Google Scholar 

  48. Mirjalili, S., Saremi, S., Mirjalili, S.M., dos Coelho, L.: Multi-objective grey wolf optimizer: a novel algorithm for multi-criterion optimization. Expert Syst. Appl. 47, 106–119 (2016)

    Article  Google Scholar 

  49. Zou, F., Wang, L., Hei, X., Chen, D., Wang, B.: Multi-objective optimization using teaching-learning-based optimization algorithm. Eng. Appl. Artif. Intell. 26(4), 1291–1300 (2013)

    Article  Google Scholar 

  50. Kumawat, I.R., Nanda, S.J., Maddila, R.K.: Multi-objective whale optimization, pp. 2747–2752. IEEE, New York (2017)

    Google Scholar 

  51. Sharma, A., Sharma, A., Averbukh, M., Rajput, S., Jately, V., Choudhury, S., Azzopardi, B.: Improved moth flame optimization algorithm based on opposition-based learning and Lévy flight distribution for parameter estimation of solar module. Energy Rep. 8, 6576–6592 (2022)

    Article  Google Scholar 

  52. Hou, G., Gong, L., Hu, B., Su, H., Huang, T., Huang, C., Fan, W., Zhao, Y.: Application of fast adaptive moth-flame optimization in flexible operation modeling for supercritical unit. Energy 239, 121843 (2022)

    Article  Google Scholar 

  53. Ma, M., Wu, J., Shi, Y., Yue, L., Yang, C., Chen, X.: Chaotic random opposition-based learning and Cauchy mutation improved moth-flame optimization algorithm for intelligent route planning of multiple UAVs. IEEE Access 10, 49385–49397 (2022)

    Article  Google Scholar 

  54. Khan, M.A., Arshad, H., Damaševičius, R., Alqahtani, A., Alsubai, S., Binbusayyis, A., Nam, Y., Kang, B.G.: Human gait analysis: a sequential framework of lightweight deep learning and improved moth-flame optimization algorithm. Comput. Intell. Neurosci. (2022). https://doi.org/10.1155/2022/8238375

    Article  PubMed  PubMed Central  Google Scholar 

  55. Ab Rashid, M.F.F., Mohd Rose, A.N., Nik Mohamed, N.M.Z.: Hybrid flow shop scheduling with energy consumption in machine shop using moth flame optimization. In: Nasir, A.F.A., Ibrahim, A.N., Ishak, I., Yahya, N.M., Zakaria, M.A., Majeed, A.P.P.A. (eds.) Recent trends in mechatronics towards industry 4.0: selected articles from IM3F 2020, pp. 77–86. Springer, Singapore (2022)

    Chapter  Google Scholar 

  56. Ramachandran, R., Satheesh Kumar, J., Madasamy, B., Veerasamy, V.: A hybrid MFO-GHNN tuned self-adaptive FOPID controller for ALFC of renewable energy integrated hybrid power system. IET Renew. Power Gener. 15(7), 1582–1595 (2021)

    Article  Google Scholar 

  57. Sahoo, S.K., Saha, A.K.: A hybrid moth flame optimization algorithm for global optimization. J. Bionic Eng. 19(5), 1522–1543 (2022)

    Article  Google Scholar 

  58. Sahoo, S.K., Saha, A.K., Sharma, S., Mirjalili, S., Chakraborty, S.: An enhanced moth flame optimization with mutualism scheme for function optimization. Soft. Comput. (2022). https://doi.org/10.1007/s00500-021-06560-0

    Article  Google Scholar 

  59. Sahoo, S.K., Saha, A.K., Nama, S., Masdari, M.: An improved moth flame optimization algorithm based on modified dynamic opposite learning strategy. Artif. Intell. Rev. 2022, 1–59 (2022)

    Google Scholar 

  60. Nadimi-Shahraki, M.H., Fatahi, A., Zamani, H., Mirjalili, S., Abualigah, L., Abd Elaziz, M.: Migration-based moth-flame optimization algorithm. Processes 9(12), 2276 (2021)

    Article  Google Scholar 

  61. Nadimi-Shahraki, M.H., Fatahi, A., Zamani, H., Mirjalili, S., Abualigah, L.: An improved moth-flame optimization algorithm with adaptation mechanism to solve numerical and mechanical engineering problems. Entropy 23(12), 1637 (2021)

    Article  ADS  MathSciNet  PubMed  PubMed Central  Google Scholar 

  62. Nadimi-Shahraki, M.H., Fatahi, A., Zamani, H., Mirjalili, S., Oliva, D.: Hybridizing of whale and moth-flame optimization algorithms to solve diverse scales of optimal power flow problem. Electronics 11(5), 831 (2022)

    Article  Google Scholar 

  63. Sahoo, S.K., Saha, A.K., Sharma, S., Khodadadi, N., Mirjalili, S.: An improved moth flame optimization algorithm with Lévy flight for solving optimization problems. J. Ambient Intell. Human. Comput. 2023, 1–15 (2023)

    Google Scholar 

  64. Sapre, S., Mini, S.: Emulous mechanism based multi-objective moth–flame optimization algorithm. J. Parallel Distrib. Comput. 150, 15–33 (2021). https://doi.org/10.1016/j.jpdc.2020.12.010

    Article  Google Scholar 

  65. Zhang, Z., Qin, H., Yao, L., Liu, Y., Jiang, Z., Feng, Z., Ouyang, S.: Improved multi-objective moth-flame optimization algorithm based on R-domination for cascade reservoirs operation. J. Hydrol. 581, 124431 (2020)

    Article  Google Scholar 

  66. Li, W.K., Wang, W.L., Li, L.: Optimization of water resources utilization by multi-objective moth-flame algorithm. Water Resour. Manage 32(10), 3303–3316 (2018). https://doi.org/10.1007/s11269-018-1992-7

    Article  MathSciNet  Google Scholar 

  67. Savsani, V., Tawhid, M.A.: Non-dominated sorting moth flame optimization (NS-MFO) for multi-objective problems. Eng. Appl. Artif. Intell. 63, 20–32 (2017). https://doi.org/10.1016/j.engappai.2017.04.018

    Article  Google Scholar 

  68. Vikas, Nanda, S.J.: Multi-objective moth flame optimization. In: 2016 International Conference on Advances in Computing, pp. 2470–2476. IEEE, New York (2016)

    Google Scholar 

  69. Chou, J.S., Truong, D.N.: Multiobjective forensic-based investigation algorithm for solving structural design problems. Autom. Constr. 134, 104084 (2022). https://doi.org/10.1016/j.autcon.2021.104084

    Article  Google Scholar 

  70. Zou, J., Sun, R., Yang, S., Zheng, J.: A dual-population algorithm based on grey wolf optimization for multi-objective optimization problems. J. Ambient. Intell. Humaniz. Comput. 12(3), 3377–3393 (2021)

    Google Scholar 

  71. Cao, Z., Wang, Z., Zhao, L., Fan, F., Sun, Y.: Multi-constraint and multi-objective optimization of free-form reticulated shells using improved optimization algorithm. Eng. Struct. 250, 113442 (2022)

    Article  Google Scholar 

  72. Zouache, D., Arby, Y.O., Nouioua, F., Abdelaziz, F.B.: Multi-objective chicken swarm optimization: a novel algorithm for solving multi-objective optimization problems. Comput. Ind. Eng. 129, 377–391 (2019)

    Article  Google Scholar 

  73. Chang, J., Li, Z., Huang, Y., Yu, X., Jiang, R., Huang, R., Yu, X.: Multi-objective optimization of a novel combined cooling, dehumidification and power system using improved M-PSO algorithm. Energy 239, 122487 (2022)

    Article  Google Scholar 

  74. Ahmadianfar, I., Heidari, A.A., Gandomi, A.H., Chu, X., Chen, H.: RUN beyond the metaphor: an efficient optimization algorithm based on Runge Kutta method. Expert Syst. Appl. 181, 115079 (2021)

    Article  Google Scholar 

  75. Rezaei, F., Safavi, H.R., Mirjalili, S.: GMO: geometric mean optimizer for solving engineering problems. Soft. Comput. 27(15), 10571–10606 (2022)

    Article  Google Scholar 

  76. Yue, C., Qu, B., Liang, J.: A multiobjective particle swarm optimizer using ring topology for solving multimodal multiobjective problems. IEEE Trans. Evol. Comput. 22(5), 805–817 (2017)

    Article  ADS  Google Scholar 

  77. Houssein, E.H., Saad, M.R., Ali, A.A., Shaban, H.: An efficient multi-objective gorilla troops optimizer for minimizing energy consumption of large-scale wireless sensor networks. Expert Syst. Appl. 212, 118827 (2023)

    Article  Google Scholar 

  78. Zhou, A., Zhang, Q., Jin, Y.: Approximating the set of Pareto-optimal solutions in both the decision and objective spaces by an estimation of distribution algorithm. IEEE Trans. Evol. Comput. 13(5), 1167–1189 (2009)

    Article  Google Scholar 

  79. Sharma, S., Khodadadi, N., Saha, A.K., Gharehchopogh, F.S., Mirjalili, S.: Non-dominated sorting advanced butterfly optimization algorithm for multi-objective problems. J. Bionic Eng. 20(2), 819–843 (2023)

    Article  Google Scholar 

  80. Gurugubelli, S., Kallepalli, D.: Weight and deflection optimization of cantilever beam using a modified non-dominated sorting genetic algorithm. IOSR J. Eng. 4(3), 19–23 (2014)

    Article  Google Scholar 

  81. Khazaee, A., Naimi, H.M.: Two multi-objective genetic algorithms for finding optimum design of an I-beam. Engineering 3(10), 1054 (2011)

    Article  Google Scholar 

  82. Ray, T., & Liew, K. M.: A swarm metaphor for multiobjective design optimization. Eng. Optim. 34(2), 141–153 (2002)

    Article  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

SKS: Software, Conceptualization, Formal analysis, Data curation, Writing—original draft. AKS: Conceptualization, Methodology, Visualization, Supervision, Writing—review and editing. EHH: Supervision, Methodology, Formal analysis, Visualization, Writing—review and editing. MP: Methodology, Formal analysis, Visualization, Writing—review and editing. SR: Methodology, Investigation, Data curation, Writing—original draft. MME: Software, Conceptualization, Formal analysis, Data curation, Writing—original draft, Writing—review and editing. All authors read and approved the final paper.

Corresponding authors

Correspondence to Apu Kumar Saha or Marwa M. Emam.

Ethics declarations

Conflict of interest

No potential biases were found in the authors' work, as they noted in the accompanying declaration—competition based on factors other than money.

Research involving in human and animal participants

None of the authors have conducted any experiments with humans or animals, and none of such experiments are included in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Tables 22 and 23.

Table 22 Details of ZDT (ZDT1, ZDT2, ZDT3 and ZDT6) multi-objective benchmark functions
Table 23 Details of DTLZ (DTLZ1 and DTLZ6) problem

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahoo, S.K., Saha, A.K., Houssein, E.H. et al. An arithmetic and geometric mean-based multi-objective moth-flame optimization algorithm. Cluster Comput (2024). https://doi.org/10.1007/s10586-024-04301-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10586-024-04301-0

Keywords

Navigation