Skip to main content
Log in

An implicit material point method using a cell-based integration scheme for large deformation static problems

  • Published:
Computational Particle Mechanics Aims and scope Submit manuscript

Abstract

A novel implicit material point method (MPM) using a cell-based integration scheme is proposed to solve large deformation static problems. An incremental weak form based on the updated Lagrangian approach is formulated for the implicit MPM. The volume integrals of the incremental weak form are evaluated at the integration points of grid cells instead of material points, which eliminates the cell-crossing error and reduces the integration error in MPM computations. Grid cells are equally sub-divided into grid cell sub-domains. The centers and the particle volumes of the grid cell sub-domains are, respectively, taken as the integration points and corresponding weights for the numerical integration of the incremental weak form. Particle information is transferred through grid nodes to the integration points of grid cells by using grid shape functions. A volume-weighted nodal averaging scheme is used for transferring the deformation gradient from material particles to grid nodes to correctly consider the particle volumes associated with the deformation gradient. Numerical results show that the present implicit MPM can effectively and efficiently solve large deformation static problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Sun X, Sakai M, Yamada Y (2013) Three-dimensional simulation of a solid–liquid flow by the DEM–SPH method. J Comput Phys 248:147–176. https://doi.org/10.1016/j.jcp.2013.04.019

    Article  ADS  MathSciNet  CAS  Google Scholar 

  2. Wu K, Yang D, Wright N (2016) A coupled SPH-DEM model for fluid-structure interaction problems with free-surface flow and structural failure. Comput Struct 177:141–161. https://doi.org/10.1016/j.compstruc.2016.08.012

    Article  Google Scholar 

  3. Cercos-Pita JL, Antuono M, Colagrossi A, Souto-Iglesias A (2017) SPH energy conservation for fluid–solid interactions. Comput Methods Appl Mech Eng 317:771–791. https://doi.org/10.1016/j.cma.2016.12.037

    Article  ADS  MathSciNet  Google Scholar 

  4. Silling SA, Lehoucq RB (2010) Peridynamic theory of solid mechanics. Adv Appl Mech 44:73–168. https://doi.org/10.1016/S0065-2156(10)44002-8

    Article  Google Scholar 

  5. Ni T, Zaccariotto M, Zhu Q-Z, Galvanetto U (2019) Static solution of crack propagation problems in Peridynamics. Comput Methods Appl Mech Eng 346:126–151. https://doi.org/10.1016/j.cma.2018.11.028

    Article  ADS  MathSciNet  Google Scholar 

  6. Zhang X, Krabbenhoft K, Pedroso DM et al (2013) Particle finite element analysis of large deformation and granular flow problems. Comput Geotech 54:133–142. https://doi.org/10.1016/j.compgeo.2013.07.001

    Article  Google Scholar 

  7. Sulsky D, Chen Z, Schreyer HL (1994) A particle method for history-dependent materials. Comput Methods Appl Mech Eng 118:179–196. https://doi.org/10.1016/0045-7825(94)90112-0

    Article  ADS  MathSciNet  Google Scholar 

  8. Sulsky D, Zhou SJ, Schreyer HL (1995) Application of a particle-in-cell method to solid mechanics. Comput Phys Commun 87:236–252. https://doi.org/10.1016/0010-4655(94)00170-7

    Article  ADS  CAS  Google Scholar 

  9. Lian YP, Zhang X, Liu Y (2012) An adaptive finite element material point method and its application in extreme deformation problems. Comput Methods Appl Mech Eng 241–244:275–285. https://doi.org/10.1016/j.cma.2012.06.015

    Article  ADS  Google Scholar 

  10. Wang L, Coombs WM, Augarde CE et al (2019) On the use of domain-based material point methods for problems involving large distortion. Comput Methods Appl Mech Eng 355:1003–1025. https://doi.org/10.1016/j.cma.2019.07.011

    Article  ADS  MathSciNet  Google Scholar 

  11. Seyedan S, Sołowski WT (2021) From solid to disconnected state and back: Continuum modelling of granular flows using material point method. Comput Struct 251:106545. https://doi.org/10.1016/j.compstruc.2021.106545

    Article  Google Scholar 

  12. Kakouris EG, Triantafyllou SP (2017) Phase-field material point method for brittle fracture. Int J Numer Methods Eng 112:1750–1776

    Article  MathSciNet  Google Scholar 

  13. Cheon Y, Kim H (2019) An adaptive material point method coupled with a phase-field fracture model for brittle materials. Int J Numer Methods Eng. https://doi.org/10.1002/nme.6167

    Article  MathSciNet  Google Scholar 

  14. Cheon YJ, Kim HG (2018) An efficient contact algorithm for the interaction of material particles with finite elements. Comput Methods Appl Mech Eng 335:631–659. https://doi.org/10.1016/j.cma.2018.02.005

    Article  ADS  MathSciNet  Google Scholar 

  15. Aulisa E, Capodaglio G (2019) Monolithic coupling of the implicit material point method with the finite element method. Comput Struct 219:1–15. https://doi.org/10.1016/j.compstruc.2019.04.006

    Article  Google Scholar 

  16. Yang W-C, Arduino P, Miller GR, Mackenzie-Helnwein P (2018) Smoothing algorithm for stabilization of the material point method for fluid–solid interaction problems. Comput Methods Appl Mech Eng 342:177–199. https://doi.org/10.1016/j.cma.2018.04.041

    Article  ADS  MathSciNet  Google Scholar 

  17. Su Y-C, Tao J, Jiang S et al (2020) Study on the fully coupled thermodynamic fluid–structure interaction with the material point method. Comput Part Mech 7:225–240. https://doi.org/10.1007/s40571-019-00261-0

    Article  Google Scholar 

  18. Bardenhagen SG, Kober EM (2004) The generalized interpolation material point method. Comput Model Eng Sci 5:477–495. https://doi.org/10.3970/cmes.2004.005.477

    Article  Google Scholar 

  19. Steffen M, Kirby RM, Berzins M (2008) Analysis and reduction of quadrature errors in the material point method (MPM). Int J Numer Methods Eng 76:922–948. https://doi.org/10.1002/nme.2360

    Article  MathSciNet  Google Scholar 

  20. Sadeghirad A, Brannon RM, Burghardt J (2011) A convected particle domain interpolation technique to extend applicability of the material point method for problems involving massive deformations. Int J Numer Methods Eng 86:1435–1456. https://doi.org/10.1002/nme.3110

    Article  MathSciNet  Google Scholar 

  21. Sadeghirad A, Brannon RM, Guilkey JE (2013) Second-order convected particle domain interpolation (CPDI2) with enrichment for weak discontinuities at material interfaces. Int J Numer Methods Eng 95:928–952. https://doi.org/10.1002/nme.4526

    Article  MathSciNet  Google Scholar 

  22. Zhang DZ, Ma X, Giguere PT (2011) Material point method enhanced by modified gradient of shape function. J Comput Phys 230:6379–6398. https://doi.org/10.1016/j.jcp.2011.04.032

    Article  ADS  MathSciNet  CAS  Google Scholar 

  23. Gan Y, Sun Z, Chen Z et al (2018) Enhancement of the material point method using B-spline basis functions. Int J Numer Methods Eng 113:411–431. https://doi.org/10.1002/nme.5620

    Article  MathSciNet  Google Scholar 

  24. Tielen R, Wobbes E, Möller M, Beuth L (2017) A high order material point method. Procedia Eng 175:265–272. https://doi.org/10.1016/j.proeng.2017.01.022

    Article  Google Scholar 

  25. Hu Y, Fang Y, Ge Z et al (2018) A moving least squares material point method with displacement discontinuity and two-way rigid body coupling. ACM Trans Graph 37:1–14. https://doi.org/10.1145/3197517.3201293

    Article  Google Scholar 

  26. Song J-U, Kim H-G (2021) An improved material point method using moving least square shape functions. Comput Part Mech 8:751–766. https://doi.org/10.1007/s40571-020-00368-9

    Article  Google Scholar 

  27. Gong M (2015) Improving the material point method. The University of New Mexico

  28. Liang Y, Zhang X, Liu Y (2019) An efficient staggered grid material point method. Comput Methods Appl Mech Eng 352:85–109. https://doi.org/10.1016/j.cma.2019.04.024

    Article  ADS  MathSciNet  Google Scholar 

  29. de Vaucorbeil A, Nguyen VP, Sinaie S, Wu JY (2020) Material point method after 25 years: theory, implementation, and applications. pp 185–398

  30. Sun Z, Zhou X (2021) An efficient particle subdomain quadrature scheme for the material point method. Acta Mech Solida Sin 34:274–285. https://doi.org/10.1007/s10338-020-00190-z

    Article  Google Scholar 

  31. Wilson P, Wüchner R, Fernando D (2021) Distillation of the material point method cell crossing error leading to a novel quadrature-based C0 remedy. Int J Numer Methods Eng 122:1513–1537. https://doi.org/10.1002/nme.6588

    Article  Google Scholar 

  32. Liu C, Sun W (2020) ILS-MPM: An implicit level-set-based material point method for frictional particulate contact mechanics of deformable particles. Comput Methods Appl Mech Eng 369:113168. https://doi.org/10.1016/j.cma.2020.113168

    Article  ADS  MathSciNet  Google Scholar 

  33. Wang B, Vardon PJ, Hicks MA, Chen Z (2016) Development of an implicit material point method for geotechnical applications. Comput Geotech 71:159–167. https://doi.org/10.1016/j.compgeo.2015.08.008

    Article  Google Scholar 

  34. Charlton TJ, Coombs WM, Augarde CE (2017) iGIMP: An implicit generalised interpolation material point method for large deformations. Comput Struct 190:108–125. https://doi.org/10.1016/j.compstruc.2017.05.004

    Article  Google Scholar 

  35. Coombs WM, Augarde CE, Brennan AJ et al (2020) On Lagrangian mechanics and the implicit material point method for large deformation elasto-plasticity. Comput Methods Appl Mech Eng 358:112622. https://doi.org/10.1016/j.cma.2019.112622

    Article  ADS  MathSciNet  Google Scholar 

  36. Yamaguchi Y, Moriguchi S, Terada K (2021) Extended B-spline-based implicit material point method. Int J Numer Methods Eng 122:1746–1769. https://doi.org/10.1002/nme.6598

    Article  MathSciNet  Google Scholar 

  37. Love E, Sulsky DL (2006) An unconditionally stable, energy–momentum consistent implementation of the material-point method. Comput Methods Appl Mech Eng 195:3903–3925. https://doi.org/10.1016/j.cma.2005.06.027

    Article  ADS  MathSciNet  Google Scholar 

  38. Hammerquist CC, Nairn JA (2017) A new method for material point method particle updates that reduces noise and enhances stability. Comput Methods Appl Mech Eng 318:724–738. https://doi.org/10.1016/j.cma.2017.01.035

    Article  ADS  MathSciNet  Google Scholar 

  39. Jiang C, Schroeder C, Teran J (2017) An angular momentum conserving affine-particle-in-cell method. J Comput Phys 338:137–164. https://doi.org/10.1016/j.jcp.2017.02.050

    Article  ADS  MathSciNet  CAS  Google Scholar 

  40. Fu C, Guo Q, Gast T et al (2017) A polynomial particle-in-cell method. ACM Trans Graph 36:1–12. https://doi.org/10.1145/3130800.3130878

    Article  CAS  Google Scholar 

  41. Kim H-G (2016) A comparative study of hyperelastic and hypoelastic material models with constant elastic moduli for large deformation problems. Acta Mech 227:1351–1362. https://doi.org/10.1007/s00707-015-1554-5

    Article  Google Scholar 

  42. Bing Y, Cortis M, Charlton TJ et al (2019) B-spline based boundary conditions in the material point method. Comput Struct 212:257–274. https://doi.org/10.1016/j.compstruc.2018.11.003

    Article  Google Scholar 

  43. Chandra B, Singer V, Teschemacher T et al (2021) Nonconforming Dirichlet boundary conditions in implicit material point method by means of penalty augmentation. Acta Geotech 16:2315–2335. https://doi.org/10.1007/s11440-020-01123-3

    Article  Google Scholar 

  44. Liang Y, Given J, Soga K (2023) The imposition of nonconforming Neumann boundary condition in the material point method without boundary representation. Comput Methods Appl Mech Eng 404:115785. https://doi.org/10.1016/j.cma.2022.115785

    Article  ADS  MathSciNet  Google Scholar 

  45. de Vaucorbeil A, Nguyen VP, Hutchinson CR (2020) A total-Lagrangian material point method for solid mechanics problems involving large deformations. Comput Methods Appl Mech Eng 360:112783. https://doi.org/10.1016/j.cma.2019.112783

    Article  ADS  MathSciNet  Google Scholar 

  46. Ma X, Giguere PT, Jayaraman B, Zhang DZ (2010) Distribution coefficient algorithm for small mass nodes in material point method. J Comput Phys 229:7819–7833. https://doi.org/10.1016/j.jcp.2010.06.041

    Article  ADS  CAS  Google Scholar 

  47. Wallstedt PC, Guilkey JE (2008) An evaluation of explicit time integration schemes for use with the generalized interpolation material point method. J Comput Phys 227:9628–9642. https://doi.org/10.1016/j.jcp.2008.07.019

    Article  ADS  MathSciNet  Google Scholar 

  48. Zhang X, Chen Z, Liu Y (2017) The material point method. Elsevier

    Book  Google Scholar 

  49. Belytschko T, Ong JS-J, Liu WK, Kennedy JM (1984) Hourglass control in linear and nonlinear problems. Comput Methods Appl Mech Eng 43:251–276. https://doi.org/10.1016/0045-7825(84)90067-7

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2022R1I1A2053461).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyun-Gyu Kim.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, JU., Kim, HG. An implicit material point method using a cell-based integration scheme for large deformation static problems. Comp. Part. Mech. (2024). https://doi.org/10.1007/s40571-024-00720-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40571-024-00720-3

Keywords

Navigation