Skip to main content
Log in

EPR studies of ferredoxin in spinach and cyanobacterial thylakoids related to photosystem I-driven NADP+ reduction

  • Research
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Photosynthetic light-dependent reactions occur in thylakoid membranes where embedded proteins capture light energy and convert it to chemical energy in the form of ATP and NADPH for use in carbon fixation. One of these integral membrane proteins is Photosystem I (PSI). PSI catalyzes light-driven transmembrane electron transfer from plastocyanin (Pc) to oxidized ferredoxin (Fd). Electrons from reduced Fd are used by the enzyme ferredoxin-NADP+ reductase (FNR) for the reduction of NADP+ to NADPH. Fd and Pc are both small soluble proteins whereas the larger FNR enzyme is associated with the membrane. To investigate electron shuttling between these diffusible and embedded proteins, thylakoid photoreduction of NADP+ was studied. As isolated, both spinach and cyanobacterial thylakoids generate NADPH upon illumination without extraneous addition of Fd. These findings indicate that isolated thylakoids either (i) retain a “pool” of Fd which diffuses between PSI and membrane bound FNR or (ii) that a fraction of PSI is associated with Fd, with the membrane environment facilitating PSI-Fd-FNR interactions which enable multiple turnovers of the complex with a single Fd. To explore the functional association of Fd with PSI in thylakoids, electron paramagnetic resonance (EPR) spectroscopic methodologies were developed to distinguish the signals for the reduced Fe-S clusters of PSI and Fd. Temperature-dependent EPR studies show that the EPR signals of the terminal [4Fe-4S] cluster of PSI can be distinguished from the [2Fe-2S] cluster of Fd at > 30 K. At 50 K, the cw X-band EPR spectra of cyanobacterial and spinach thylakoids reduced with dithionite exhibit EPR signals of a [2Fe-2S] cluster with g-values gx = 2.05, gy = 1.96, and gz = 1.89, confirming that Fd is present in thylakoid preparations capable of NADP+ photoreduction. Quantitation of the EPR signals of P700+ and dithionite reduced Fd reveal that Fd is present at a ratio of ~ 1 Fd per PSI monomer in both spinach and cyanobacterial thylakoids. Light-driven electron transfer from PSI to Fd in thylakoids confirms Fd is functionally associated (< 0.4 Fd/PSI) with the acceptor end of PSI in isolated cyanobacterial thylakoids. These EPR experiments provide a benchmark for future spectroscopic characterization of Fd interactions involved in multistep relay of electrons following PSI charge separation in the context of photosynthetic thylakoid microenvironments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data are available upon request from the authors.

References

  • Andersen B, Scheller HV, Moller BL (1992) The PSI-E subunit of photosystem I binds ferredoxin: NADP+ oxidoreductase. FEBS 311:169–173

    Article  CAS  Google Scholar 

  • Benz JP, Stengel A, Lintala M, Lee YH, Weber A, Philippar K, Gugel IL, Kaieda S, Ikegami T, Mulo P, Soll J, Bolter B (2009) Arabidopsis Tic62 and ferredoxin-NADP(H) oxidoreductase form light-regulated complexes that are integrated into the chloroplast redox poise. Plant Cell 21:3965–3993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bergner SV, Scholz M, Trompelt K, Barth J, Gabelein P, Steinbeck J, Xue H, Clowez S, Fucile G, Goldschmidt-Clermont M, Fufezan C, Hippler M (2015) State transition-dependent phosphorylation is modulated by changing environmental conditions, and its absence trigger remodeling of photosynthetic protein complexes. Plant Physiol 168:615–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bohme H (1978) Quntitative determination of ferredoxin, ferredoxin-NADP+ reductase and plastocyanin in spinach chloroplasts. Eur J Biochem 83:137–141

    Article  CAS  PubMed  Google Scholar 

  • Brahmachari U, Pokkuluri PR, Tiede DM, Niklas J, Poluektov OG, Mulfort KL, Utschig LM (2020) Interprotein electron transfer biohybrid system for photocatalytic H2 production. Photosyn Res 143:183–192

    Article  CAS  Google Scholar 

  • Breyton C, Nandha B, Johnson GN, Joliot P, Finazzi G (2006) Redox modulation of cyclic electron flow around photosystem I in C3 plants. Biochem 45:13465–13475

    Article  CAS  Google Scholar 

  • Bruns CM, Karplus PA (1995) Refined crystal structure of spinach ferredoxin reductase at 1.7 A resolution: oxidized, reduced, and 2′-phospho-5′-AMP bound states. J Mol Biol 247:125–145

    Article  CAS  PubMed  Google Scholar 

  • Carrillo N, Vallejos RH (1982) Interaction of ferredoxin-NADP oxidoreductase with the thylakoid membrane. Plant Physiol 69:210–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caspy I, Borovikova-Sheinker A, Klaiman D, Shkolnisky Y, Nelson N (2020) The structure of a triple complex of plant photosystem I with ferredoxin and plastocyanin. Nat Plants 6:1300–1305

    Article  CAS  PubMed  Google Scholar 

  • Clark RD, Hawkesford MJ, Coughlan SJ, Bennett J, Hind G (1984) Association of ferredoxin-NADP+ oxidoreductase with the chloroplast cythochrome B-F complex. FEBS Lett 174:137–142

    Article  CAS  Google Scholar 

  • Colvert KK, Davis DJ (1983) Effect of pH, salt, and coupling state on the interaction of ferredoxin with the chloroplast membrane. Arch Biochem Biophys 225:936–943

    Article  CAS  PubMed  Google Scholar 

  • Forti G, Grubas PMG (1985) Two sites of interaction of ferredoxin with thylakoids. FEBS Lett 186(2):149–152

    Article  CAS  Google Scholar 

  • Forti G, Cappelletti A, Nobili RL, Garlaschi FM, Gerola PD, Jennings RC (1983) Interaction of ferredoxin and ferredoxin-NADP reductase with thylakoids. Arch Biochem Biophys 221:507–513

    Article  CAS  PubMed  Google Scholar 

  • Gisriel CJ, Flesher DA, Shen G, Wang J, Ho MH, Brudvig GW, Bryant DA (2021) Structure of a photosystem I-ferredoxin complex from a marine cyanobacterium provides insights into far-red light photoacclimation. J Biol Chem 298:101408

    Article  PubMed  PubMed Central  Google Scholar 

  • Gomez-Lojero C, Perez-Gomez B, Shen G, Schluhter WM, Bryant DA (2003) Interaction of ferredoxin: NADP+ oxidoreductase with phycobilisoms and phycobilisome substructres of the cyanobacterium Synechococcus sp. strain PCC 7002. Biochemistry 42:13800–13811

    Article  CAS  PubMed  Google Scholar 

  • Guedeney G, Corneille S, Cuine S, Peltier G (1996) Evidence for an association of ndh B, ndh J gene products and ferredoxin-NADP-reductase as components of a chloroplastic NAD(P)H dehydrogenase complex. FEBS Lett 378:277–280

    Article  CAS  PubMed  Google Scholar 

  • Hanke G, Mulo P (2013) Plant type ferredoxins and ferredoxin-dependent metabolism. Plant, Cell Environ 36:1071–1084

    Article  CAS  PubMed  Google Scholar 

  • Hanke GT, Okutani S, Satomi Y, Takae T, Suzuki A, Hase T (2005) Multiple iso-proteins of FNR in Arabidopsis: evidence for different contributions to chloroplast function and nitrogen assimilation. Plant, Cell Environ 28:1146–1157

    Article  CAS  Google Scholar 

  • Iwai M, Takizawa K, Tokutsu R, Okamuro A, Takahashi Y, Minagawa J (2010) Isolation of the elusive supercomplex that drives cyclic electron flow in photosynthesis. Nature 464(7292):1210-U1134

    Article  ADS  CAS  PubMed  Google Scholar 

  • Joliot P, Johnson GN (2011) Regulation of cyclic and linear electron flow in higher plants. Proc Natl Acad Sci USA 108:13317–13322

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Juric S, Hazler-Pilepic K, Tomasic A, Lepedus H, Jelicic B, Puthiyaveetil S, Bionda T, Vojta L, Allen JF, Schleiff E, Fulgosi H (2009) Tethering of ferredoxin: NADP+ oxidoreductase to thylakoid membranes is mediated by novel chloroplast protein TROL. Plant J 60:783–794

    Article  CAS  PubMed  Google Scholar 

  • Korn A, Ajlai G, Lagoutte B, Gall A, Setif P (2009) Ferredoxin: NADP+ oxidoreductase association with phycocyanin modulates its properties. J Biol Chem 284:31789–31797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kramer M, Rodriguez-Heredia M, Saccon F, Mosebach L, Twachtmann M, Krieger-Liszkay A, Duffy C, Knell RJ, Finazzi G, Hanke GT (2021) Regulation of photosynthetic electron flow on dark to light transition by ferredoxin: NADP(H) oxidoreductase interactions. eLife 10:e56088

  • Lelong C, Setif P, Lagoutte B, Bottin H (1994) Identification of the amino-acids involved in the functional interaction between Photosystem-I and ferredoxin from Synechocystis Sp-Pcc-6803 by chemical cross-linking. J Biol Chem 269(13):10034–10039

    Article  CAS  PubMed  Google Scholar 

  • Li F, Wei X, Zhang L, Liu C, You C, Zhu Z (2022) Installing a green engine to drive an enzyme cascade: a light-powered in vitro biosystem for poly(3-hydroxybutyrate) synthesis. Angew Chem Int Ed 61:e202111054

    Article  CAS  Google Scholar 

  • Liu LN (2016) Distribution and dynamics of electron transport complexes in cyanobacterial thylakoid membranes. Biochim Biophys Acta Bioenerg 1857(3):256–265

    Article  CAS  Google Scholar 

  • Liu H, Weisz DA, Zhang MM, Cheng M, Zhang B, Zhang H, Gerstenecker GS, Pakrasi HB, Gross ML, Blankenship RE (2019) Phycobilisomes Harbor FNRL in Cyanobacteria. Mbio 10:e00669-e619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marco P, Elman T, Yacoby I (2019) Binding of ferredoxin NADP+ oxidoreductase (FNR) to plant photosystem I. Biochim Biophys Acta Bioenerg 1860:689–698

    Article  CAS  PubMed  Google Scholar 

  • Matthijs HCP, Coughlan SJ, Hind G (1986) Removal of ferredoxin: NADP+ oxidoreductase from thylakoid membranes, rebinding to depleted membranes, and identification of the binding site. J Biol Chem 261:12154–12158

    Article  CAS  PubMed  Google Scholar 

  • Medina M (2009) Structural and mechanistic aspects of flavoproteins: photosynthetic electron transfer from photosystem I to NADP+. FEBS J 276(15):3942–3958

    Article  CAS  PubMed  Google Scholar 

  • Miller TE, Beneyton T, Schwander T, Diehl C, Girault M, McLean R, Chotel T, Claus P, Cortina NS, Baret J-C, Erb TJ (2020) Light-powered CO2 fixation in a chloroplast mimic with natural and synthetic parts. Science 368:649–654

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Moal G, Lagoutte B (2012) Photo-induced electron transfer from photosystem I to NADP+: characterization and tentative simulation of the in vivo environment. Biochim Biophys Acta 1817:1635–1645

    Article  CAS  PubMed  Google Scholar 

  • Mosebach L, Heilmann C, Mutoh R, Gabelein P, Steinbeck J, Happe T, Ikegami T, Hanke G, Kurisu G, Hippler M (2017) Association of ferredoxin: NADP+ oxidoreductase with the photosynthetic apparatus modulates electron transfer in Chlamydomonas reinhardtii. Photosyn Res 134:291–306

    Article  CAS  Google Scholar 

  • Mulo P (2011) Chloroplast-targeted ferredoxin-NADP+ oxidoreductase (FNR): structure, function and location. Biochim Biophys Acta 1807:927–934

    Article  CAS  PubMed  Google Scholar 

  • Mulo P, Medina M (2017) Interaction and electron transfer between ferredoxin-NADP+ oxidoreductase and its partners: structural, functional, and physiological implications. Photosyn Res 134:265–280

    Article  CAS  Google Scholar 

  • Mustardy L, Buttle K, Steinbach G, Garab G (2008) The three-dimensional network of the thylakoid membranes in plants: quasihlical model of the granum-stroma assembly. Plant Cell 20:2552–2557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nawrocki WJ, Bailleul B, Pico D, Cardol P, Rappaport F, Wollman FA, Joliot P (2019) The mechanism of cyclic electron flow. Biochim Biophys Acta Bioenerg 1860:433–438

    Article  CAS  PubMed  Google Scholar 

  • Okutani S, Hanke GT, Satomi Y, Takae T, Kurisu G, Suzuki A, Hase T (2005) Three maize leaf ferredoxin: NADPH oxidoreductases vary in subchloroplast location, expression, and interaction with ferredoxin. Plant Physiol 139:1451–1459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Omairi-Nasser A, de Gracia AG, Ajlani G (2011) A larger transcript is required for the synthesis of the smaller isoform of ferredoxin: NADP oxidoreductase. Mol Microbiol 81:1178–1189

    Article  CAS  PubMed  Google Scholar 

  • Quiles MJ, Cuello J (1998) Association of ferredoxin-NADP oxidoreductase with the chloroplastic pyridine nucleotide dehydrogenase complex in barley leaves. Plant Physiol 117:235–244

    Article  Google Scholar 

  • Rupp H, Rao KK, Hall DO, Cammack R (1978) Electron spin relaxation of iron-sulfur proteins studied by microwave power saturation. Biochim Biophys Acta 537:255–269

    Article  CAS  PubMed  Google Scholar 

  • Schluchter WM, Bryant DA (1992) Molecular characterization of Ferredoxin-NADP+ oxidoreductase in cyanobacteria: cloning and sequence of the petH gene of Synechococcus sp. PCC 7002 and studies on the gene product. Biochem 31:3092–3102

    Article  CAS  Google Scholar 

  • Serre L, Vellieux FMD, Medina M, Gomez-Morena C, Fontecilla-Camps JC, Frey M (1996) X-ray structure of the ferredoxin: NADP+ reductase from the cyanobacterium Anabaena PCC 7119 at 1.8 A resolution, and the crystallographic studies of NADP+ binding at 2.25 A resolution. J Mol Biol 263:20–39

    Article  CAS  PubMed  Google Scholar 

  • Takahashi H, Okamuro A, Minagawa J, Takahashi Y (2014) Biochemical characterization of photosystem I-associated light-harvesting complexes I and II isolated from state 2 cells of Chlamydomonas reinhardtii. Plant Cell Physiol 55:1437–1449

    Article  CAS  PubMed  Google Scholar 

  • Thomas JC, Ughy B, Lagoutte B, Ajlani G (2006) A second isoform of the ferredoxin: NADP oxidoreductase generated by an in-frame initiation of translation. Proc Natl Acad Sci USA 103:18368–18373

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Tong X, Kim E-J, Lee JK (2022) Sustainability of in vitro light-dependent NADPH generation by the thylakoid membrane of Synechocystis sp. PCC6803. Microbial Cell Factories 21:94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Utschig LM, Silver SC, Mulfort KL, Tiede DM (2011) Nature-driven photochemistry for catalytic solar hydrogen production: A Photosystem I-transition metal catalyst hybrid. J Am Chem Soc 133(41):16334–16337

    Article  CAS  PubMed  Google Scholar 

  • Utschig LM, Soltau SR, Mulfort KL, Niklas J, Poluektov O (2018) Z-scheme solar water splitting via self-assembly of photosystem I-catalyst hybrids in thylakoid membranes. Chem Sci 9:8504–8512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Utschig LM, Brahmachari U, Mulfort KL, Niklas J, Poluektov OG (2022) Biohybrid photosynthetic charge accumulation detected by flavin semiquinone formation in ferredoxin-NADP+ reductase. Chem Sci 13:18368–18373

    Article  Google Scholar 

  • Utschig LM, Zaluzec NJ, Malavath T, Ponomarenko NS, Tiede DM (2023) Solar water splitting Pt-nanoparticle photosystem I thylakoid systems: catalyst identification, location and oligomeric structure. Biochim Biophys Acta Bioenerg 1864:148974

    Article  CAS  PubMed  Google Scholar 

  • van Thor JJ, Geerlings TH, Matthijs HCP, Hellingwerf KJ (1999a) Kinetic evidence for the PsaE-dependent transient ternary complex photosystem I/ferredoxin/ferredoxin: NADP+ reductase in a cyanobacterium. Biochem 38:12735–12746

    Article  Google Scholar 

  • van Thor JJ, Gruters OW, Matthijs HC, Hellingwerf KJ (1999b) Localization and function of ferredoxin: NADP+ reductase bound to the phycobilisomes of Synechocystis. EMBO J 18:4128–4136

    Article  PubMed  PubMed Central  Google Scholar 

  • Vassiliev IR, Antonkine ML, Golbeck JH (2001) Iron-sulfur clusters in Type I reaction centers. Biochim Biophys Acta 1507:139–160

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Whitelegge JP, Cramer WA (2001) Ferredoxin: NADP+ oxidoreductase is a subunit of the chloroplast cytochrome b6f complex. J Biol Chem 276:38159–38165

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank A. Wagner for growth of the cyanobacteria and J. Bindra for assistance with EPR spectra collection. This work is supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, Biosciences, as well as the Photon Sciences Division, under Contract No. DE-AC02-06CH11357.

Author information

Authors and Affiliations

Authors

Contributions

LMU conceived the project. LMU and CLD prepared the thylakoids and conducted all the biochemistry experiments. LMU prepared the EPR samples. JN and OGP performed the EPR experiments and analysis. LMU wrote the manuscript. All authors discussed the results and contributed to manuscript editing.

Corresponding author

Correspondence to Lisa M. Utschig.

Ethics declarations

Competing interests

The authors declare no competing interests.

Statement of informed consent, human/animal rights

No conflicts, informed consent, human or animal rights are applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 379 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Utschig, L.M., Duckworth, C.L., Niklas, J. et al. EPR studies of ferredoxin in spinach and cyanobacterial thylakoids related to photosystem I-driven NADP+ reduction. Photosynth Res (2024). https://doi.org/10.1007/s11120-023-01072-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11120-023-01072-4

Keywords

Navigation