Skip to main content
Log in

Dynamics of microcavities created by nonharmonic unipolar light pulses in a resonant medium

  • Research
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

When ultra-short unipolar pulses overlap in a resonant medium, the formation of a dynamic “microcavity”, i.e. a burst of the population difference, is feasible. This paper presents, first, the relations allowing to calculate the parameters of such a microcavity using the analytical solution of the equations for the density matrix of a two-level medium, and second, the dependence of the microcavities’ parameters on the pulse form using the numerical solution of Maxwell–Bloch equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon request.

References

  1. R.M. Arkhipov et al., Quantum Electron. 50, 801 (2020)

    Article  ADS  Google Scholar 

  2. N. Rosanov et al., Phys. Rev. A 104, 063101 (2021)

    Article  ADS  Google Scholar 

  3. A. Emmanouilidou, T. Uzer, Phys. Rev. A 77, 063416 (2008)

    Article  ADS  Google Scholar 

  4. A. Pakhomov et al., Phys. Rev. A 105, 043103 (2022)

    Article  ADS  Google Scholar 

  5. J.J. Mestayer et al., Phys. Rep. 672, 1 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  6. A.S. Moskalenko et al., Phys. Rep. 672, 1 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  7. V.V. Kozlov et al., Phys. Rev. AA 84, 023818 (2011)

    Article  ADS  Google Scholar 

  8. A.B. Plachenov, N.N. Rosanov, Radiophys. Quantum El 65, 911 (2023)

    Article  ADS  Google Scholar 

  9. N. Rosanov, Laser Phys. Lett. 20, 095301 (2023)

    Article  ADS  Google Scholar 

  10. G. Naumenko et al., Phys. Part. Nucl. Lett.Nucl. Lett. 17, 834 (2020)

    Article  ADS  Google Scholar 

  11. M. Arkhipov et al., JETP Lett. 115, 1 (2021)

    Article  ADS  Google Scholar 

  12. V.L. Ginzburg, S.I. Syrovatskii, Sov. Phys. Usp. 8, 674 (1966)

    Article  ADS  Google Scholar 

  13. S. Sazonov, Opt. Spectrosc. 130, 1 (2023)

    Article  Google Scholar 

  14. A.V. Bogatskaya et al., Phys. Rev. E 105, 055203 (2022)

    Article  ADS  Google Scholar 

  15. A.S. Kuratov et al., Phys. Rev. E 106, 035201 (2022)

    Article  ADS  Google Scholar 

  16. A. Pakhomov et al., Phys. Rev. A 106, 053506 (2022)

    Article  ADS  Google Scholar 

  17. Y. Gao et al., Opt. Lett. 33, 2776 (2008)

    Article  ADS  Google Scholar 

  18. M.V. Tsarev, M.I. Bakunov, Opt. Express 27, 5154 (2019)

    Article  ADS  Google Scholar 

  19. H.-C. Wu, J. Meyer-ter Vehn, Nat. Photon. 6, 304 (2012)

    Article  ADS  Google Scholar 

  20. M.T. Hassan et al., Nature 530, 66 (2016)

    Article  ADS  Google Scholar 

  21. H. Alqattan et al., APL Photon. 7(4), 041301 (2022)

    Article  ADS  Google Scholar 

  22. M.I. Bakunov et al., Phys. Rev. A 95(6), 063817 (2017)

    Article  ADS  Google Scholar 

  23. I.E. Ilyakov et al., Opt. Express 30, 14978 (2022)

    Article  ADS  Google Scholar 

  24. M. Arkhipov et al., Opt. Lett. 48, 4637 (2023)

    Article  ADS  Google Scholar 

  25. R.M. Arkhipov et al., JETP Lett. 117(8), 574 (2023)

    Article  ADS  Google Scholar 

  26. A.V. Pakhomov et al., Quantum Electron. 51, 1000 (2021)

    Article  ADS  Google Scholar 

  27. A. Pakhomov et al., Opt. Lett. (2023). https://doi.org/10.1364/OL.503802

    Article  Google Scholar 

  28. E.I. Shtyrkov, Opt. Spectrosc.Spectrosc. 114, 96 (2013)

    Article  ADS  Google Scholar 

  29. R.M. Arkhipov et al., Opt. Lett. 41, 4983 (2016)

    Article  ADS  Google Scholar 

  30. S. Zhang et al., J. Nanophoton. 17(1), 016013 (2023)

    Article  ADS  Google Scholar 

  31. R.M. Arkhipov, JETP Lett. 113, 611 (2021)

    Article  ADS  Google Scholar 

  32. Y. Sharabi et al., Optica 9(6), 585 (2022)

    Article  ADS  Google Scholar 

  33. V. Pacheco-Peña, N. Engheta, Light Sci. Appl. 9, 129 (2020)

    Article  ADS  Google Scholar 

  34. Y. Sharabi et al., Phys. Rev. Lett. 126, 163902 (2021)

    Article  ADS  Google Scholar 

  35. R.M. Arkhipov et al., Opt. Spectr. 130(11), 1443 (2022)

    Article  MathSciNet  Google Scholar 

  36. O.O. Diachkova et al., Optics Commun. 538, 129475 (2023)

    Article  Google Scholar 

  37. R. Arkhipov et al., Opt. Express 28, 17020 (2020)

    Article  ADS  Google Scholar 

  38. A. Yariv, Quantum Electronics (Wiley, N.Y., 1975)

    Google Scholar 

  39. A.E. Siegman, Lasers (University Science Books, Sausolito, CA, 1986)

    Google Scholar 

  40. R.M. Arkhipov et al., Sci. Rep. 7, 12467 (2017)

    Article  ADS  Google Scholar 

  41. R. Arkhipov et al., Sci. Rep. 11, 1961 (2021)

    Article  Google Scholar 

  42. M. Arkhipov et al., Phys.Rev. Lett. 128(20), 203901 (2022)

    Article  ADS  Google Scholar 

Download references

Funding

Russian Science Foundation under the project 23-12-00012 (study of the theoretical approach), the State assignment of the Ioffe Institute, topic 0040-2019-0017 (numerical calculations).

Author information

Authors and Affiliations

Authors

Contributions

A.V. and O.O. and R.M. wrote the main manuscript text, O.O. prepared figures, N.N. and R.M. jointly supervised the work; all authors reviewed the manuscript. Main contributors to the analytical part is A.V. and R.M., main contributors to the modelling part is O.O., M.V. and R.M.

Corresponding author

Correspondence to R. M. Arkhipov.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest related to this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arkhipov, R.M., Diachkova, O.O., Arkhipov, M.V. et al. Dynamics of microcavities created by nonharmonic unipolar light pulses in a resonant medium. Appl. Phys. B 130, 52 (2024). https://doi.org/10.1007/s00340-024-08191-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-024-08191-3

Navigation