Skip to main content
Log in

Abstract

Nuclear photonics is a emerging field of science which combines research with new generation \(\gamma \)-ray sources based on traditional and laser-based electron accelerators. Here, we discuss isomeric studies carried out with \(\gamma \)-ray beams having either continuous, or quasi-monochromatic photon spectra. In experiments with high-power lasers, intense secondary radiation sources are generated. Such experiments explore isomer population or de-excitation in plasma environments. Laser-accelerated particle beams with high charge also facilitate high-energy nuclear excitations, leading to efficient production of nuclear isomers with higher lying isomeric state (reaching MeV energy level) within very-short time scales. The population of isomeric states is a sensitive diagnostic method for characterization of the laser-driven secondary radiation sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

No data are associated in the manuscript.

References

  1. F. Soddy, The stability of lead isotopes from thorium. Nature 99(2482), 244–245 (1917). https://doi.org/10.1038/099245a0

    Article  CAS  ADS  Google Scholar 

  2. O. Hahn, Über eine neue radioaktive substanz im uran. Berichte der deutschen chemischen Gesellschaft (A and B Ser.) 54(6), 1131–1142 (1921). https://doi.org/10.1002/cber.19210540602

    Article  Google Scholar 

  3. G.D. Dracoulis, P.M. Walker, F.G. Kondev, Review of metastable states in heavy nuclei. Rep. Progr. Phys. 79(7), 076301 (2016). https://doi.org/10.1088/0034-4885/79/7/076301

    Article  CAS  ADS  Google Scholar 

  4. P. Walker, Z. Podolyák, 100 years of nuclear isomers-then and now. Phys. Scr. 95(4), 12 (2020). https://doi.org/10.1088/1402-4896/ab635d

    Article  CAS  Google Scholar 

  5. S. Garg, B. Maheshwari, B. Singh, Y. Sun, A. Goel, A.K. Jain, Atlas of nuclear isomers-second edition. Atom. Data Nucl. Data Tables 150, 101546 (2023). https://doi.org/10.1016/j.adt.2022.101546

    Article  CAS  Google Scholar 

  6. W. Bothe, W. Gentner, Atomumwandlungen durch \(\gamma \)-strahlen. Zeitschrift für Physik 106, 236–248 (1937). https://doi.org/10.1007/s001090000086

    Article  CAS  ADS  Google Scholar 

  7. M. Goldhaber, E. Teller, On nuclear dipole vibrations. Phys. Rev. 74(9), 1046 (1948). https://doi.org/10.1103/PhysRev.74.1046

    Article  CAS  ADS  Google Scholar 

  8. R.H. Milburn, Electron scattering by an intense polarized photon field. Phys. Rev. Lett. 10(3), 75 (1963). https://doi.org/10.1103/PhysRevLett.10.75

    Article  ADS  Google Scholar 

  9. F.R. Arutyunian, V.A. Tumanian, The compton effect on relativistic electrons and the possibility of obtaining high energy beams. Phys. Lett. 4(3), 176–178 (1963). https://doi.org/10.1016/0031-9163(63)90351-2

    Article  ADS  Google Scholar 

  10. D. Strickl, G. Mourou, Compression of amplified chirped optical pulses. Opt. Commun. 55(6), 447–449 (1985). https://doi.org/10.1016/0030-4018(85)90120-8

    Article  ADS  Google Scholar 

  11. ...I.J. Arnquist, F.T. Avignone, A.S. Barabash, C.J. Barton, K.H. Bhimani, E. Blalock, B. Bos, M. Busch, M. Buuck, T.S. Caldwell, C.D. Christofferson, P.-H. Chu, M.L. Clark, C. Cuesta, J.A. Detwiler, Y. Efremenko, H. Ejiri, S.R. Elliott, G.K. Giovanetti, J. Goett, M.P. Green, J. Gruszko, I.S. Guinn, V.E. Guiseppe, C.R. Haufe, R. Henning, D.H. Aguilar, E.W. Hoppe, A. Hostiuc, I. Kim, R.T. Kouzes, T.E. Lannen V, A. Li, J.M. López-Castaño, R. Massarczyk, S.J. Meijer, W. Meijer, T.K. Oli, L.S. Paudel, W. Pettus, A.W.P. Poon, D.C. Radford, A.L. Reine, K. Rielage, A. Rouyer, N.W. Ruof, D.C. Schaper, S.J. Schleich, T.A. Smith-Gandy, D. Tedeschi, J.D. Thompson, R.L. Varner, S. Vasilyev, S.L. Watkins, J.F. Wilkerson, C. Wiseman, W. Xu, C.-H. Yu, Constraints on the decay of \(^{180}\text{ Ta}^m\). Phys. Rev. Lett. 131(15), 152501 (2023). https://doi.org/10.1103/PhysRevLett.131.152501

    Article  CAS  ADS  PubMed  Google Scholar 

  12. J.A. Anderson, C.B. Collins, Calibration of pulsed bremsstrahlung spectra with photonuclear reactions of \(^{77}\)Se and \(^{79}\)Br. Rev. Sci. Instrum. 58(11), 2157–2160 (1987). https://doi.org/10.1063/1.1139661

    Article  CAS  ADS  Google Scholar 

  13. J.A. Anderson, C.B. Collins, Calibration of pulsed X-ray spectra. Rev. Sci. Instrum. 59(3), 414–419 (1988). https://doi.org/10.1063/1.1140219

    Article  CAS  ADS  Google Scholar 

  14. J.A. Anderson, J.M. Carroll, K.N. Taylor, J.J. Carroll, M.J. Byrd, T.W. Sinor, C.B. Collins, F.J. Agee, D. Davis, G.A. Huttlin, K.G. Kerris, Nuclear activation techniques for measuring direct and backscattered components of intense bremsstrahlung pulses. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 40, 1189–1192 (1989). https://doi.org/10.1016/0168-583X(89)90568-5

    Article  ADS  Google Scholar 

  15. P. von Neumann-Cosel, N. Huxel, A. Richter, C. Spieler, J.J. Carroll, C.B. Collins, Absolute calibration of low energy, thick target bremsstrahlung. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 338(2), 425–431 (1994). https://doi.org/10.1016/0168-9002(94)91326-9

    Article  ADS  Google Scholar 

  16. P. von Neumann-Cosel, A. Richter, C. Spieler, W. Ziegler, J.J. Carroll, T.W. Sinor, D.G. Richmond, K.N. Taylor, Resonant photoexcitation of isomers. \(^{115}\)In\(^{m}\) as a test case. Phys. Lett. B 266(1–2), 9–13 (1991). https://doi.org/10.1016/0370-2693(91)90736-A

    Article  ADS  Google Scholar 

  17. J.J. Carroll, T.W. Sinor, D.G. Richmond, K.N. Taylor, C.B. Collins, M. Huber, N. Huxel, P. Neumann-Cosel, A. Richter, C. Spieler, W. Ziegler, Excitation of \(^{123m}\)Te and \(^{125m}\)Te through (\(\gamma \), \(\gamma \)’) reactions. Phys. Rev. C 43(2), 897 (1991). https://doi.org/10.1103/PhysRevC.43.897

    Article  CAS  ADS  Google Scholar 

  18. J.J. Carroll, M.J. Byrd, D.G. Richmond, T.W. Sinor, K.N. Taylor, W.L. Hodge, E.C. Scarbrough, P.P. Antich, F.J. Agee, D. Davis, G.A. Huttlin, K.G. Kerris, M.S. Litz, D.A. Whittaker, Photoexcitation of nuclear isomers by (\(\gamma \), \(\gamma \)’) reactions. Phys. Rev. C 43(3), 1238 (1991). https://doi.org/10.1103/PhysRevC.43.1238

    Article  CAS  ADS  Google Scholar 

  19. J.J. Carroll, C.B. Collins, K. Heyde, M. Huber, P. von Neumann-Cosel, V.Y. Ponomarev, D.G. Richmond, A. Richter, C. Schlegel, T.W. Sinor, K.N. Taylor, Intermediate structure in the photoexcitation of \(^{77}\text{ Se}^{m}\), \(^{79}\text{ Br}^{m}\), and \(^{137}\text{ Ba}^{m}\). Phys. Rev. C (1993). https://doi.org/10.1103/PhysRevC.48.2238

    Article  Google Scholar 

  20. M. Huber, P. von Neumann-Cosel, A. Richter, C. Schlegel, R. Schulz, J.J. Carroll, K.N. Taylor, D.G. Richmond, T.W. Sinor, C.B. Collins, V.Y. Ponomarev, Structure of intermediate states in the photoexcitation of the \(^{89}\)Y isomer. Nucl. Phys. A 559(2), 253–265 (1993). https://doi.org/10.1016/0375-9474(93)90190-9

    Article  CAS  ADS  Google Scholar 

  21. ...D. Belic, C. Arlandini, J. Besserer, J. de Boer, J.J. Carroll, J. Enders, T. Hartmann, F. Käppeler, H. Kaiser, U. Kneissl, M. Loewe, H.J. Maier, H. Maser, P. Mohr, P. von Neumann-Cosel, A. Nord, H.H. Pitz, A. Richter, M. Schumann, S. Volz, A. Zilges, Photoactivation of \(^{180}\)Ta\(^m\) and its implications for the nucleosynthesis of nature’s rarest naturally occurring isotope. Phys. Rev. Lett. 83(25), 5242 (1999). https://doi.org/10.1103/PhysRevLett.83.5242

    Article  CAS  ADS  Google Scholar 

  22. ...D. Belic, C. Arlandini, J. Besserer, J. de Boer, J.J. Carroll, J. Enders, T. Hartmann, F. Käppeler, H. Kaiser, U. Kneissl, E. Kolbe, K. Langanke, M. Loewe, H.J. Maier, H. Maser, P. Mohr, P. von Neumann-Cosel, A. Nord, H.H. Pitz, A. Richter, M. Schumann, F.-K. Thielemann, S. Volz, A. Zilges, Photo-induced depopulation of the \(^{180}\)Ta\(^m\) isomer via low-lying intermediate states: structure and astrophysical implications. Phys. Rev. C 65(3), 035801 (2002). https://doi.org/10.1103/PhysRevC.65.035801

    Article  CAS  ADS  Google Scholar 

  23. ...K.L. Malatji, M. Wiedeking, S. Goriely, C.P. Brits, B.V. Kheswa, F.L. Bello Garrote, D.L. Bleuel, F. Giacoppo, A. Görgen, M. Guttormsen, K. Hadynska-Klek, T.W. Hagen, V.W. Ingeberg, M. Klintefjord, A.C. Larsen, P. Papka, T. Renstrøm, E. Sahin, S. Siem, L. Siess, G.M. Tveten, F. Zeiser, Re-estimation of \(^{180}\)Ta nucleosynthesis in light of newly constrained reaction rates. Phys. Lett. B 791, 403–408 (2019). https://doi.org/10.1016/j.physletb.2019.03.013

    Article  CAS  ADS  Google Scholar 

  24. ...C.P. Brits, K.L. Malatji, M. Wiedeking, B.V. Kheswa, S. Goriely, F.L. Bello Garrote, D.L. Bleuel, F. Giacoppo, A. Görgen, M. Guttormsen, K. Hadynska-Klek, T.W. Hagen, S. Hilaire, V.W. Ingeberg, H. Jia, M. Klintefjord, A.C. Larsen, S.N.T. Majola, P. Papka, S. Péru, B. Qi, T. Renstrøm, S.J. Rose, E. Sahin, S. Siem, G.M. Tveten, F. Zeiser, Nuclear level densities and \(\gamma \)-ray strength functions of \(^{180,181,182}\)Ta. Phys. Rev. C 99(5), 054330 (2019). https://doi.org/10.1103/PhysRevC.99.054330

    Article  CAS  ADS  Google Scholar 

  25. C. Arlandini, F. Käppeler, K. Wisshak, R. Gallino, M. Lugaro, M. Buss, O. Straniero, Neutron capture in low-mass asymptotic giant branch stars: cross sections and abundance signatures. Astrophys. J. 525(2), 886 (1999). https://doi.org/10.1086/307938

    Article  CAS  ADS  Google Scholar 

  26. I. Bikit, L. Lakosi, J. Sáfár, L. Čonkić, De-excitation of \(^{180m}\)Ta by \(^{60}\)Co gamma rays. Astrophys. J. 522(1), 419 (1999). https://doi.org/10.1086/307607

    Article  CAS  ADS  Google Scholar 

  27. L. Lakosi, T.C. Nguyen, Photoexcitation of \(^{180}\)Ta by \(^{60}\)Co and \(^{137}\)Cs gamma rays. Nucl. Phys. A 697(1), 44–54 (2002). https://doi.org/10.1016/S0375-9474(01)01232-5

    Article  ADS  Google Scholar 

  28. C.B. Collins, C.D. Eberhard, J.W. Glesener, J.A. Anderson, Depopulation of the isomeric state \(^{180}\text{ Ta}^{m}\) by the reaction \(^{180}\text{ Ta}^{m}(\gamma ,{\gamma }^{\prime })^{180}\text{ Ta }\). Phys. Rev. C 37, 2267–2269 (1988). https://doi.org/10.1103/PhysRevC.37.2267

    Article  CAS  ADS  Google Scholar 

  29. C.B. Collins, J.J. Carroll, T.W. Sinor, M.J. Byrd, D.G. Richmond, K.N. Taylor, M. Huber, N. Huxel, P.V. Neumann-Cosel, A. Richter, C. Spieler, W. Ziegler, Resonant excitation of the reaction \(^{180}\text{ Ta}^{m}\)(\(\gamma \),\(\gamma \)\({)}^{180}\)Ta. Phys. Rev. C 42, 1813–1816 (1990). https://doi.org/10.1103/PhysRevC.42.R1813

    Article  CAS  ADS  Google Scholar 

  30. D. Belic, J. Besserer, C. Arlandini, J. de Boer, J.J. Carroll, J. Enders, T. Hartmann, F. Käppeler, H. Kaiser, U. Kneissl, M. Loewe, H. Maser, P. Mohr, P. von Neumann-Cosel, A. Nord, H.H. Pitz, A. Richter, M. Schumann, S. Volz, A. Zilges, The new photoactivation facility at the 4.3 MV Stuttgart DYNAMITRON: setup, performance, and first applications. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 463(1–2), 26–41 (2001). https://doi.org/10.1016/S0168-9002(01)00225-X

    Article  CAS  ADS  Google Scholar 

  31. P.M. Walker, G.D. Dracoulis, J.J. Carroll, Interpretation of the excitation and decay of \(^{180}\)Ta\(^{m}\) through a \({K}^{\pi }{=5}^{+}\) band. Phys. Rev. C 64, 061302 (2001). https://doi.org/10.1103/PhysRevC.64.061302

    Article  CAS  ADS  Google Scholar 

  32. N. Klay, F. Käppeler, H. Beer, G. Schatz, H. Börner, F. Hoyler, S.J. Robinson, K. Schreckenbach, B. Krusche, U. Mayerhofer, G. Hlawatsch, H. Lindner, T. von Egidy, W. Andrejtscheff, P. Petkov, Nuclear structure of \(^{176}\)Lu and its astrophysical consequences I Level scheme of \(^{176}\)Lu. Phys. Rev. C 44, 2801–2838 (1991). https://doi.org/10.1103/physrevc.44.2801

    Article  CAS  ADS  Google Scholar 

  33. N. Klay, F. Käppeler, H. Beer, G. Schatz, Nuclear structure of \(^{176}\)Lu and its astrophysical consequences. II. \(^{176}\)Lu, a thermometer for stellar helium burning. Phys. Rev. C 44(6), 2839 (1991). https://doi.org/10.1103/PhysRevC.44.2839

    Article  CAS  ADS  Google Scholar 

  34. ...S. Walter, F. Stedile, J.J. Carroll, C. Fransen, G. Friessner, N. Hollmann, H.V. Garrel, J. Jolie, O. Karg, F. Käppeler, U. Kneissl, C. Kohstall, P.V. Neumann-Cosel, A. Linnemann, D. Mücher, N. Pietralla, H.H. Pitz, G. Rusev, M. Scheck, C. Scholl, R. Schwengner, V. Werner, K. Wisshak, Photon scattering experiments on the quasistable, odd-odd mass nucleus \(^{176}\text{ Lu }\). Phys. Rev. C 75, 034301 (2007). https://doi.org/10.1103/PhysRevC.75.034301

    Article  CAS  ADS  Google Scholar 

  35. P. Mohr, S. Bisterzo, R. Gallino, F. Käppeler, U. Kneissl, N. Winckler, Properties of the \({5}^{-}\) state at 839 keV in \(^{176}\text{ Lu }\) and the \(s\)-process branching at \({A}=176\). Phys. Rev. C 79, 045804 (2009). https://doi.org/10.1103/PhysRevC.79.045804

    Article  CAS  ADS  Google Scholar 

  36. G.D. Dracoulis, F.G. Kondev, G.J. Lane, A.P. Byrne, M.P. Carpenter, R.V.F. Janssens, T. Lauritsen, C.J. Lister, D. Seweryniak, P. Chowdhury, Connections between high-\({K}\) and low-\({K}\) states in the \(s\)-process nucleus \(^{176}\rm Lu \). Phys. Rev. C 81, 011301 (2010). https://doi.org/10.1103/PhysRevC.81.011301

    Article  CAS  ADS  Google Scholar 

  37. C.B. Collins, F. Davanloo, M.C. Iosif, R. Dussart, J.M. Hicks, S.A. Karamian, C.A. Ur, I.I. Popescu, V.I. Kirischuk, J.J. Carroll, H.E. Roberts, P. McDaniel, C.E. Crist, Accelerated emission of gamma rays from the 31-yr isomer of \({}^{178}\text{ Hf }\) induced by x-ray irradiation. Phys. Rev. Lett. 82, 695–698 (1999). https://doi.org/10.1103/PhysRevLett.82.695

    Article  CAS  ADS  Google Scholar 

  38. I. Ahmad, J.C. Banar, J.A. Becker, T.A. Bredeweg, J.R. Cooper, D.S. Gemmell, A. Kraemer, A. Mashayekhi, D.P. McNabb, G.G. Miller, E.F. Moore, P. Palmer, L.N. Pangault, R.S. Rundberg, J.P. Schiffer, S.D. Shastri, T.-F. Wang, J.B. Wilhelmy, Search for X-ray induced decay of the 31-yr isomer of \(^{178}\text{ Hf }\) using synchrotron radiation. Phys. Rev. C 71, 024311 (2005). https://doi.org/10.1103/PhysRevC.71.024311

    Article  CAS  ADS  Google Scholar 

  39. J.J. Carroll, S.A. Karamian, R. Propri, D. Gohlke, N. Caldwell, P. Ugorowski, T. Drummond, J. Lazich, H. Roberts, M. Helba, Z. Zhong, M.-T. Tang, J.-J. Lee, K. Liang, Search for low-energy induced depletion of \(^{178}\)Hf\(^{m2}\) at the spring-8 synchrotron. Phys. Lett. B 679(3), 203–208 (2009). https://doi.org/10.1016/j.physletb.2009.07.025

    Article  CAS  ADS  Google Scholar 

  40. D. Habs, U. Köster, Production of medical radioisotopes with high specific activity in photonuclear reactions with \(\gamma \)-beams of high intensity and large brilliance. Appl. Phys. B 103, 501–519 (2011). https://doi.org/10.1016/S0168-9002(98)01121-8

    Article  CAS  ADS  Google Scholar 

  41. ...J. Jolie, J.-M. Regis, D. Wilmsen, M.-S. Ahmed, M. Pfeiffer, N. Saed-Samii, N. Warr, A. Blanc, M. Jentschel, U. Köster, P. Mutti, T. Soldner, G.S. Simpson, G. de France, W. Urban, F. Drouet, A. Vancraeyenest, P. Baczyk, M. Czerwinski, A. Korgul, C. Mazzocchi, T. Rzaca-Urban, A. Bruce, O.J. Roberts, L.M. Fraile, V. Paziy, A. Ignatov, S. Ilieva, T. Kröll, M. Scheck, J. Stamm, M. Thürauf, D. Ivanova, S. Kisyov, S. Lalkovski, Z. Podolyak, P.H. Regan, W. Korten, D. Habs, P. Thirolf, C.A. Ur, C. Bernards, R.F. Casten, N. Cooper, F. Naqvi, V. Werner, R.B. Cakirli, S. Leoni, G. Benzoni, G. Bocchi, S. Bottoni, F.C.L. Crespi, B. Fornal, N. Cieplicka, B. Szpak, R. Leguillon, R. John, R. Massarczyk, R. Schwengner, D. Curien, L. Sengele, The (n, \(\gamma \)) campaigns at EXILL. EPJ Web Conf. 93(6), 01014 (2015). https://doi.org/10.1051/epjconf/20159301014

    Article  Google Scholar 

  42. ...M. Jentschel, A. Blanc, G. de France, U. Köster, S. Leoni, P. Mutti, G. Simpson, T. Soldner, C. Ur, W. Urban, S. Ahmed, A. Astier, L. Augey, T. Back, P. Baczyk, A. Bajoga, D. Balabanski, T. Belgya, G. Benzoni, C. Bernards, D.C. Biswas, G. Bocchi, S. Bottoni, R. Britton, B. Bruyneel, J. Burnett, R.B. Cakirli, R. Carroll, W. Catford, B. Cederwall, I. Celikovic, N. Cieplicka-Oryńczak, E. Clement, N. Cooper, F. Crespi, M. Csatlos, D. Curien, M. Czerwiński, L.S. Danu, A. Davies, F. Didierjean, F. Drouet, G. Duchéne, C. Ducoin, K. Eberhardt, S. Erturk, L.M. Fraile, A. Gottardo, L. Grente, L. Grocutt, C. Guerrero, D. Guinet, A.-L. Hartig, C. Henrich, A. Ignatov, S. Ilieva, D. Ivanova, B.V. John, R. John, J. Jolie, S. Kisyov, M. Krticka, T. Konstantinopoulos, A. Korgul, A. Krasznahorkay, T. Kröll, J. Kurpeta, J.I. Kuti, S. Lalkovski, C. Larijani, R. Leguillon, R. Lica, O. Litaize, R. Lozeva, C. Magron, C. Mancuso, E. Ruiz Martinez, R. Massarczyk, C. Mazzocchi, B. Melon, D. Mengoni, C. Michelagnoli, B. Million, C. Mokry, S. Mukhopadhyay, K. Mulholland, A. Nannini, D.R. Napoli, B. Olaizola, R. Orlandi, Z. Patel, V. Paziy, C. Petrache, M. Pfeiffer, N. Pietralla, Z. Podolyak, M. Ramdhane, N. Redon, P. Regan, J.M. Regis, D. Regnier, R.J. Oliver, M. Rudigier, J. Runke, T. Rzaca-Urban, N. Saed-Samii, M.D. Salsac, M. Scheck, R. Schwengner, L. Sengele, P. Singh, J. Smith, O. Stezowski, B. Szpak, T. Thomas, M. Thurowf, J. Timar, A. Tom, I. Tomandl, T. Tornyi, C. Townsley, A. Tuerler, S. Valenta, A. Vancraeyenst, V. Vandone, J. Vanhoy, V. Vedia, N. Warr, V. Werner, D. Wilmsen, E. Wilson, E. Zerrouki, M. Zielinska, EXILL—a high-efficiency, high-resolution setup for \(\gamma \)-spectroscopy at an intense cold neutron beam facility. J. Instrum. 12(11), 11003 (2017). https://doi.org/10.1088/1748-0221/12/11/P11003

    Article  Google Scholar 

  43. D.D. Warner, R.F. Casten, M.L. Stelts, H.G. Börner, G. Barreau, Nuclear structure of \(^{195}\)Pt. Phys. Rev. C 26(5), 1921 (1982). https://doi.org/10.1103/PhysRevC.26.1921

    Article  CAS  ADS  Google Scholar 

  44. P. Mohr, Z. Fülöp, H. Utsunomiya, Photo-induced nucleosynthesis: current problems and experimental approaches. Eur. Phys. J. A 32(3), 357–369 (2007). https://doi.org/10.1140/epja/i2006-10378-y

    Article  CAS  ADS  Google Scholar 

  45. G. Gyürky, Z. Fülöp, F. Käppeler, G.G. Kiss, A. Wallner, The activation method for cross section measurements in nuclear astrophysics. Eur. Phys. J. A 55(3), 41 (2019). https://doi.org/10.1140/epja/i2019-12708-4

    Article  CAS  ADS  Google Scholar 

  46. S.E. Woosley, W.M. Howard, The p-process in supernovae. Astrophys. J. Suppl. Ser. 36, 285–304 (1978). https://doi.org/10.1086/190501

    Article  CAS  ADS  Google Scholar 

  47. M. Arnould, S. Goriely, The p-process of stellar nucleosynthesis: astrophysics and nuclear physics status. Phys. Rep. 384(1–2), 1–84 (2003). https://doi.org/10.1016/S0370-1573(03)00242-4

    Article  CAS  ADS  Google Scholar 

  48. K. Sonnabend, D. Savran, J. Beller, M.A. Büssing, A. Constantinescu, M. Elvers, J. Endres, M. Fritzsche, J. Glorius, J. Hasper, J. Isaak, B. Löher, S. Müllner, N. Pietralla, C. Romig, A. Sauerwein, L. Schnorrenberger, C. Wälzlein, A. Zilges, M. Zweidinger, The Darmstadt high-intensity photon setup (DHIPS) at the S-DALINAC. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 640(1), 6–12 (2011). https://doi.org/10.1016/j.nima.2011.02.107

    Article  CAS  ADS  Google Scholar 

  49. J. Teichert, A. Büchner, P. Evtushenko, F. Gabriel, U. Lehnert, P. Michel, J. Voigtländer, Results of beam parameter measurement of the ELBE electron accelerator after commissioning. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 507(1–2), 354–356 (2003). https://doi.org/10.1016/S0168-9002(03)00918-5

    Article  CAS  ADS  Google Scholar 

  50. H. Utsunomiya, S. Hashimoto, S. Miyamoto, The \(\gamma \)-ray beam-line at NewSUBARU. Nucl. Phys. News 25(3), 25–29 (2015). https://doi.org/10.1080/10619127.2015.1067539

    Article  ADS  Google Scholar 

  51. ...V.N. Litvinenko, B. Burnham, M. Emamian, N. Hower, J.M.J. Madey, P. Morcombe, P.G. O’Shea, S.H. Park, R. Sachtschale, K.D. Straub, G. Swift, P. Wang, Y. Wu, R.S. Canon, C.R. Howell, N.R. Roberson, E.C. Schreiber, M. Spraker, W. Tornow, H.R. Weller, I.V. Pinayev, N.G. Gavrilov, M.G. Fedotov, G.N. Kulipanov, G.Y. Kurkin, S.F. Mikhailov, V.M. Popik, A.N. Skrinsky, N.A. Vinokurov, B.E. Norum, A. Lumpkin, B. Yang, Gamma-ray production in a storage ring free-electron laser. Phys. Rev. Lett. 78(24), 4569 (1997). https://doi.org/10.1103/PhysRevLett.78.4569

    Article  CAS  ADS  Google Scholar 

  52. H.R. Weller, M.W. Ahmed, H.Y. Gao, W. Tornow, Y.K. Wu, M. Gai, R. Miskimen, Research opportunities at the upgraded HI\(\gamma \)S facility. Progr. Part. Nucl. Phys. 62(1), 257–303 (2009). https://doi.org/10.1016/j.ppnp.2008.07.001

    Article  CAS  ADS  Google Scholar 

  53. C. Nair, M. Erhard, A.R. Junghans, D. Bemmerer, R. Beyer, E. Grosse, J. Klug, K. Kosev, G. Rusev, K.D. Schilling, R. Schwengner, A. Wagner, Photoactivation experiment on \(^{197}\)Au and its implications for the dipole strength in heavy nuclei. Phys. Rev. C 78(5), 055802 (2008). https://doi.org/10.1103/PhysRevC.78.055802

    Article  CAS  ADS  Google Scholar 

  54. C. Nair, A.R. Junghans, M. Erhard, D. Bemmerer, R. Beyer, E. Grosse, K. Kosev, M. Marta, G. Rusev, K.D. Schilling, R. Schwengner, A. Wagner, Dipole strength in \(^{144}\)Sm studied via (\(\gamma \), n),(\(\gamma \), p), and (\(\gamma \), \(\alpha \)) reactions. Phys. Rev. C 81(5), 055806 (2010). https://doi.org/10.1103/PhysRevC.81.055806

    Article  CAS  ADS  Google Scholar 

  55. M. Erhard, A.R. Junghans, C. Nair, R. Schwengner, R. Beyer, J. Klug, K. Kosev, A. Wagner, E. Grosse, Experimental study of the electric dipole strength in the even Mo nuclei and its deformation dependence. Phys. Rev. C 81(3), 034319 (2010). https://doi.org/10.1103/PhysRevC.81.034319

    Article  CAS  ADS  Google Scholar 

  56. C. Nair, A.R. Junghans, M. Erhard, P. Bemmerer, D. Crespo, R. Beyer, E. Grosse, M. Fauth, K. Kosev, G. Rusev, K.D. Schilling, R. Schwengner, A. Wagner, Photodisintegration studies on p-nuclei: the case of Mo and Sm isotopes. J. Phys. G Nucl. Part. Phys. 35(1), 014036 (2007). https://doi.org/10.1088/0954-3899/35/1/014036

    Article  CAS  ADS  Google Scholar 

  57. S.W. Finch, M.E. Gooden, C. Hagmann, C.R. Howell, Krishichayan, A.P.D. Ramirez, J.A. Silano, M.A. Stoyer, A.P. Tonchev, W. Tornow, J.B. Wilhelmy, Development of a rapid-transit system for precision nuclear physics measurements. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 1025, 166127 (2022). https://doi.org/10.1016/j.nima.2021.166127

    Article  CAS  Google Scholar 

  58. D.L. Balabanski, P. Constantin, 80 years of experimental photo-fission research. Eur. Phys. J. A (under review) (2023)

  59. M. Bhike, W. Tornow, Krishichayan, A.P. Tonchev, Exploratory study of fission product yield determination from photofission of \(^{239}\)Pu at 11 MeV with monoenergetic photons. Phys. Rev. C 95(2), 024608 (2017). https://doi.org/10.1103/PhysRevC.95.024608

    Article  ADS  Google Scholar 

  60. Krishichayan, M. Bhike, C.R. Howell, A.P. Tonchev, W. Tornow, Fission product yield measurements using monoenergetic photon beams. Phys. Rev. C 100(1), 014608 (2019). https://doi.org/10.1103/PhysRevC.100.014608

    Article  CAS  ADS  Google Scholar 

  61. F. Carrel, M. Agelou, M. Gmar, F. Lainé, J. Loridon, J.L. Ma, C. Passard, B. Poumarède, Identification and differentiation of actinides inside nuclear waste packages by measurement of delayed gammas. IEEE Trans. Nucl. Sci. 57(5), 2862–2871 (2010). https://doi.org/10.1109/TNS.2010.2064334

    Article  CAS  ADS  Google Scholar 

  62. F. Carrel, M. Agelou, M. Gmar, F. Lainé, Detection of high-energy delayed gammas for nuclear waste packages characterization. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 652(1), 137–139 (2011). https://doi.org/10.1016/j.nima.2010.08.014

    Article  CAS  ADS  Google Scholar 

  63. E. Simon, F. Jallu, B. Pérot, S. Plumeri, Feasibility study of fissile mass quantification by photofission delayed gamma rays in radioactive waste packages using MCNPX. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 840, 28–35 (2016). https://doi.org/10.1016/j.nima.2016.09.047

    Article  CAS  ADS  Google Scholar 

  64. F. Carrel, M. Agelou, M. Gmar, F. Lainé, J. Loridon, J.L. Ma, C. Passard, B. Poumarède, New experimental results on the cumulative yields from thermal fission of \(^{235}\)U and \(^{239}\)Pu from photofission of \(^{235}\)U and \(^{238}\)U induced by bremsstrahlung. IEEE Trans. Nucl. Sci. 58(4), 2064–2072 (2011). https://doi.org/10.1109/TNS.2011.2157169

    Article  CAS  ADS  Google Scholar 

  65. M. Delarue, E. Simon, B. Pérot, P.G. Allinei, N. Estre, E. Payan, D. Eck, D. Tisseur, I. Espagnon, J. Collot, Measurement of cumulative photofission yields of \(^{235}\)U and \(^{238}\)U with a 16 MeV bremsstrahlung photon beam. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 1011, 165598 (2021). https://doi.org/10.1016/j.nima.2021.165598

    Article  CAS  Google Scholar 

  66. M. Delarue, E. Simon, B. Pérot, P.G. Allinei, N. Estre, D. Eck, E. Payan, I. Espagnon, J. Collot, New measurements of cumulative photofission yields of \(^{239}\)Pu, \(^{235}\)U and \(^{238}\)U with a 17.5 MeV bremsstrahlung photon beam and progress toward actinide differentiation. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 1040, 167259 (2022). https://doi.org/10.1016/j.nima.2022.167259

    Article  CAS  Google Scholar 

  67. M. Gmar, J.M. Capdevila, Use of delayed gamma spectra for detection of actinides (U, Pu) by photofission. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 422(1–3), 841–845 (1999). https://doi.org/10.1016/S0168-9002(98)01121-8

    Article  CAS  ADS  Google Scholar 

  68. W.T. Pan, T. Song, H.Y. Lan, Z.G. Ma, J.L. Zhang, Z.C. Zhu, W. Luo, Photo-excitation production of medically interesting isomers using intense \(\gamma \)-ray source. Appl. Radiat. Isot. 168, 109534 (2021). https://doi.org/10.1016/j.apradiso.2020.109534

    Article  CAS  PubMed  Google Scholar 

  69. F. Gobet, C. Plaisir, F. Hannachi, M. Tarisien, T. Bonnet, M. Versteegen, M.M. Aleonard, G. Gosselin, V. Meot, P. Morel, Nuclear physics studies using high energy lasers. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 653(1), 80–83 (2011). https://doi.org/10.1016/j.nima.2011.01.106

    Article  CAS  ADS  Google Scholar 

  70. Z. Ma, C. Fu, W. He, Y. Ma, Manipulation of nuclear isomers with lasers: mechanisms and prospects. Sci. Bull. 67, 1526–1529 (2022). https://doi.org/10.1016/j.scib.2022.06.020

    Article  CAS  Google Scholar 

  71. H. Zhang, W. Wang, X. Wang, Nuclear excitation cross section of \(^{229}\)Th via inelastic electron scattering. Phys. Rev. C 106, 044604 (2023). https://doi.org/10.1103/PhysRevC.106.044604

    Article  ADS  Google Scholar 

  72. M. Morita, Nuclear excitation by electron transition and its application to uranium 235 separation. Progr. Theor. Phys. 49(5), 1574–1586 (1973). https://doi.org/10.1143/PTP.49.1574

    Article  CAS  ADS  Google Scholar 

  73. S. Kishimoto, Y. Yoda, M. Seto, Y. Kobayashi, S. Kitao, R. Haruki, T. Kawauchi, K. Fukutani, T. Okano, Observation of nuclear excitation by electron transition in \(^{197}\)Au with synchrotron X rays and an avalanche photodiode. Phys. Rev. Lett. 85(9), 1831 (2000). https://doi.org/10.1103/PhysRevLett.85.1831

    Article  CAS  ADS  PubMed  Google Scholar 

  74. V.I. Goldanskii, V.A. Namiot, On the excitation of isomeric nuclear levels by laser radiation through inverse internal electron conversion. Phys. Lett. B 62(4), 393–394 (1976). https://doi.org/10.1016/0370-2693(76)90665-1

    Article  ADS  Google Scholar 

  75. Y. Wu, J. Gunst, C.H. Keitel, A. Pálffy, Tailoring laser-generated plasmas for efficient nuclear excitation by electron capture. Phys. Rev. Lett. 120(5), 052504 (2018). https://doi.org/10.1103/PhysRevLett.120.052504

    Article  CAS  ADS  PubMed  Google Scholar 

  76. H. Zhang, X. Wang, Theory of isomeric excitation of \(^{229}\)Th via electronic processes. Front. Phys. 11, 1166566 (2023). https://doi.org/10.3389/fphy.2023.1166566

    Article  Google Scholar 

  77. M.R. Harston, J.F. Chemin, Mechanisms of nuclear excitation in plasmas. Phys. Rev. C 59(5), 2462 (1999). https://doi.org/10.1103/PhysRevC.59.2462

    Article  CAS  ADS  Google Scholar 

  78. A.A. Zadernovsky, J.J. Carroll, Non-radiative triggering of long-lived nuclear isomers. Hyperfine Interact. 143, 153–174 (2002). https://doi.org/10.1023/A:1024063610971

    Article  CAS  ADS  Google Scholar 

  79. Y. Izawa, C. Yamanaka, Production of \(^{235}\)U\(^m\) by nuclear excitation by electron transition. Phys. Lett. B 88(1–2), 59–61 (1979). https://doi.org/10.1016/0370-2693(79)90113-8

    Article  ADS  Google Scholar 

  80. R. Arutyunyan, L.A. Bolshov, V.D. Vikharev, S.A. Dorshakov, V.A. Kornilo, A.A. Krivolapov, V. Smirnov, E. Tkalya, Cross section for excitation of the isomer \(^{235m}\)U in the plasma produced by an electron beam. Soviet J. Nucl. Phys. (Engl. Transl.) 53(1), 23–26 (1991)

    Google Scholar 

  81. J.A. Bounds, P. Dyer, Search for nuclear excitation by laser-driven electron motion. Phys. Rev. C 46(3), 852 (1992). https://doi.org/10.1103/PhysRevC.46.852

    Article  CAS  ADS  Google Scholar 

  82. G. Claverie, M.M. Aléonard, J.F. Chemin, F. Gobet, F. Hannachi, M.R. Harston, G. Malka, J.N. Scheurer, P. Morel, V. Méot, Search for nuclear excitation by electronic transition in \(^{235}\)U. Phys. Rev. C 70(4), 044303 (2004). https://doi.org/10.1103/PhysRevC.70.044303

    Article  CAS  ADS  Google Scholar 

  83. A.V. Andreev, R.V. Volkov, V.M. Gordienko, P.M. Mikheev, A.B. Savel’ev, E.V. Tkalya, O.V. Chutko, A.A. Shashkov, A.M. Dykhne, Excitation of tantalum-181 nuclei in a high-temperature femtosecond laser plasma. J. Exp. Theor. Phys. Lett. 69, 371–376 (1999). https://doi.org/10.1134/1.568036

    Article  CAS  Google Scholar 

  84. A.V. Andreev, R.V. Volkov, V.M. Gordienko, A.M. Dykhne, P.M. Mikheev, A.B. Savel’ev, E.V. Tkalya, R.A. Chalykh, O.V. Chutko, Excitation of low-lying nuclear levels in a nonrelativistic hot dense laser-produced plasma. Quantum Electron. 29(1), 55 (1999). https://doi.org/10.1070/qe1999v029n01abeh001411

    Article  CAS  ADS  Google Scholar 

  85. A.V. Andreev, R.V. Volkov, V.M. Gordienko, A.M. Dykhne, M.P. Kalashnikov, P.M. Mikheev, P.V. Nikles, A.B. Savel’ev, E.V. Tkalya, R.A. Chalykh, O.V. Chutko, Excitation and decay of low-lying nuclear states in a dense plasma produced by a subpicosecond laser pulse. J. Exp. Theor. Phys. 91, 1163–1175 (2000). https://doi.org/10.1134/1.1342882

    Article  CAS  ADS  Google Scholar 

  86. F. Gobet, F. Hannachi, M.M. Aléonard, M. Gerbaux, G. Malka, J.N. Scheurer, M. Tarisien, G. Claverie, D. Descamps, F. Dorchies, R. Fedosejevs, C. Fourment, S. Petit, V. Meot, P. Morel, Particle characterization for the evaluation of the \(^{181m}\)Ta excitation yield in millijoule laser induced plasmas. J. Phys. B Atom. Mol. Opt. Phys. 41(14), 145701 (2008). https://doi.org/10.1088/0953-4075/41/14/145701

    Article  CAS  ADS  Google Scholar 

  87. A.V. Andreev, V.M. Gordienko, A.B. Savel’ev, E.V. Tkalya, A.M. Dykhne, Excitation of nuclei in a hot, dense plasma: feasibility of experiments with \(^{201}\)Hg. J. Exp. Theor. Phys. Lett. 66, 331–335 (1997). https://doi.org/10.1134/1.567517

    Article  Google Scholar 

  88. J. Feng, W. Wang, C. Fu, L. Chen, J. Tan, Y. Li, J. Wang, Y. Li, G. Zhang, Y. Ma, J. Zhang, Femtosecond pumping of nuclear isomeric states by the coulomb collision of ions with quivering electrons. Phys. Rev. Lett. 128(5), 052501 (2022). https://doi.org/10.1103/PhysRevLett.128.052501

    Article  CAS  ADS  PubMed  Google Scholar 

  89. V.V. Koltsov, Prospects for plasma de-excitation of \(^{186m}\)Re nuclear isomer. Phys. Atom. Nuclei 84(10), 1691–1696 (2021). https://doi.org/10.1134/S1063778821090192

    Article  CAS  ADS  Google Scholar 

  90. G. Gosselin, P. Morel, Enhanced nuclear level decay in hot dense plasmas. Phys. Rev. C 70(6), 064603 (2004). https://doi.org/10.1103/PhysRevC.70.064603

    Article  CAS  ADS  Google Scholar 

  91. G. Gosselin, V. Meot, P. Morel, Modified nuclear level lifetime in hot dense plasmas. Phys. Rev. C 76(4), 044611 (2007). https://doi.org/10.1103/PhysRevC.76.044611

    Article  CAS  ADS  Google Scholar 

  92. V.V. Vatulin, N.V. Jidkov, A.A. Rimsky-Korsakov, V.V. Karasev, V.V. Koltsov, A.I. Kostylev, G.V. Tachaev, Searching for stimulated de-excitation of the \(^{186m}\)Re nuclei isomeric state in ISKRA-5 laser plasma. Bull. Russ. Acad. Sci. Phys. 81, 1159–1162 (2017). https://doi.org/10.3103/S1062873817100252

    Article  CAS  Google Scholar 

  93. V.G. Borodin, V.V. Vatulin, N.V. Zhidkov, I.P. Elin, V.M. Komarov, V.V. Karasev, V.V. Koltsov, V.A. Malinov, V.M. Migel, V.S. Popikov, A.A. Rimsky-Korsakov, Search for de-excitation of the \(^{186m}\)Re and \(^{110m}\)Ag nuclear isomers in plasma of high-power picosecond laser pulse. Phys. Atom. Nuclei 82, 1706–1713 (2019). https://doi.org/10.1134/S1063778819120032

    Article  CAS  ADS  Google Scholar 

  94. C.J. Chiara, J.J. Carroll, M.P. Carpenter, J.P. Greene, D.J. Hartley, R.V.F. Janssens, G.J. Lane, J.C. Marsh, D.A. Matters, M. Polasik, J. Rzadkiewicz, D. Seweryniak, S. Zhu, S. Bottoni, A.B. Hayes, S.A. Karamian, Isomer depletion as experimental evidence of nuclear excitation by electron capture. Nature 554(7691), 216–218 (2018). https://doi.org/10.1038/nature25483

    Article  CAS  ADS  PubMed  Google Scholar 

  95. K.M. Spohr, D. Doria, V. Baran, M.O. Cernaianu, P.V. Ghenuche, V.O. Nastasa, D. O’Donnell, P.-A. Söderström, L. Tudor, C.A. Ur, C.-J. Yang, On the possibility of laser-plasma-induced depopulation of the isomer in \(^{93}\)Mo at ELI-NP. Eur. Phys. J. A 59(11), 281 (2023). https://doi.org/10.1140/epja/s10050-023-01160-y

    Article  CAS  ADS  Google Scholar 

  96. W. Fan, W. Qi, J. Zhang, Z. Cao, H. Lan, X. Li, Y. Xu, Y. Gu, Z. Deng, Z. Zhang, C. Tan, W. Luo, Y. Yuan, W. Zhou, Efficient production of nuclear isomer \(^{93m}\)Mo with laser-accelerated proton beam and its astrophysical implication on \(^{92}\)Mo production. Phys. Rev. Res. (2023). https://doi.org/10.1103/PhysRevResearch.5.043120

    Article  Google Scholar 

  97. K.W.D. Ledingham, P. McKenna, R.P. Singhal, Applications for nuclear phenomena generated by ultra-intense lasers. Science 300(5622), 1107–1111 (2003). https://doi.org/10.1126/science.1080552

    Article  CAS  ADS  PubMed  Google Scholar 

  98. M.M. Günther, O.N. Rosmej, P. Tavana et al., Forward-looking insights in laser-generated ultra-intense \(\gamma \)-ray and neutron sources for nuclear application and science. Nat. Commun. 13(1), 170 (2022). https://doi.org/10.1038/s41467-021-27694-7

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  99. Z. Ma, H. Lan, W. Liu, S. Wu, Y. Xu, Z. Zhu, W. Luo, Photonuclear production of medical isotopes \(^{62, 64}\)Cu using intense laser-plasma electron source. Matter Radiat. Extrem. 4(6), 064401 (2019). https://doi.org/10.1063/1.5100925

    Article  CAS  Google Scholar 

  100. Z.W. Cao, W. Qi, H.Y. Lan, B. Cui, X.H. Zhang, Z.G. Deng, Z.M. Zhang, G.L. Wang, L.Q. Zhang, X.K. Li, Y. Yuan, X.X. Li, Z.Q. Zhao, W. Luo, W.M. Zhou, Experimental study of medical isotopes \(^{62,64}\)Cu and \(^{68}\)Ga production using intense picosecond laser pulse. Plasma Phys. Control Fusion 65, 055007 (2023). https://doi.org/10.1088/1361-6587/acc090

    Article  ADS  Google Scholar 

  101. Z.C. Li, Y. Yang, Z.W. Cao, X.X. Li, Y. Yuan, Z.Q. Zhao, G.T. Fan, H.W. Wang, W. Luo, Effective extraction of photoneutron cross-section distribution using gamma activation and reaction yield ratio method. Nucl. Sci. Tech. 34, 170 (2023). https://doi.org/10.1007/s41365-023-01330-z

    Article  CAS  Google Scholar 

  102. J.L. Zhang, W. Qi, W.R. Fan, Z.W. Cao, K.J. Luo, C.X. Tan, X.H. Zhang, Z.G. Deng, Z.M. Zhang, X.X. Li, Y. Yuan, W. Luo, W.M. Zhou, Study of isomeric yield ratio in photoneutron reaction of natural holmium induced by laser-accelerated electron beam. Front. Astron. Space Sci. 10, 1265919 (2023). https://doi.org/10.3389/fspas.2023.1265919

    Article  ADS  Google Scholar 

  103. J. Feng, Y. Li, J. Tan, W. Wang, Y. Li, X. Zhang, Y. Meng, X. Ge, F. Liu, W. Yan, C. Fu, L. Chen, J. Zhang, Laser plasma-accelerated ultra-intense electron beam for efficiently exciting nuclear isomers. Laser Photon. Rev. 17, 2300514 (2023). https://doi.org/10.1002/lpor.202300514

    Article  ADS  Google Scholar 

  104. H.Y. Lan, D. Wu, J.X. Liu, J.Y. Zhang, H.G. Lu, J.F. Lv, X.Z. Wu, W. Luo, X.Q. Yan, Photonuclear production of nuclear isomers using bremsstrahlung induced by laser-wakefield electrons. Nucl. Sci. Tech. 34(5), 74 (2023). https://doi.org/10.1007/s41365-023-01219-x

    Article  CAS  Google Scholar 

  105. ...D. Wu, H.Y. Lan, J.Y. Zhang, J.X. Liu, H.G. Lu, J.F. Lv, X.Z. Wu, H. Zhang, J. Cai, X.L. Xu, Y.X. Geng, W.J. Ma, C. Lin, Y.Y. Zhao, H.R. Wang, F.L. Liu, C.Y. He, J.Q. Yu, B. Guo, N.Y. Wang, X.Q. Yan, New measurements of \(^{92}\)Mo (\(\gamma \), n) and (\(\gamma \), 3n) reactions using laser-driven bremsstrahlung \(\gamma \)-ray. Front. Phys. 11, 1178257 (2023). https://doi.org/10.3389/fphy.2023.1178257

    Article  Google Scholar 

  106. ...D. Wu, H.Y. Lan, J.Y. Zhang, J.X. Liu, H.G. Lu, J.F. Lv, X.Z. Wu, H. Zhang, J. Cai, Q.Y. Ma, Y.H. Xia, Z.N. Wang, M.Z. Wang, Z.Y. Yang, X.L. Xu, Y.X. Geng, Y.Y. Zhao, C. Lin, W.J. Ma, J.Q. Yu, H.R. Wang, F.L. Liu, C.Y. He, B. Guo, P. Zhu, G.Q. Zhang, N.Y. Wang, Y.G. Ma, X.Q. Yan, \(^{197}\)Au(\(\gamma \), xn; x=1 \(\sim \) 9) reaction cross section measurements using laser-driven ultra-intense \(\gamma \)-ray source. Nucl. Exp. (2023). https://doi.org/10.48550/arXiv.2209.13947

    Article  Google Scholar 

  107. ...M.Z. Wang, D. Wu, H.Y. Lan, J.Y. Zhang, J.X. Liu, H.G. Lu, J.F. Lv, X.Z. Wu, H. Zhang, J. Cai, Q.Y. Ma, Y.H. Xia, Z.N. Wang, Z.Y. Yang, X.L. Xu, Y.X. Geng, Y.Y. Zhao, H.R. Wang, F.L. Liu, J.Q. Yu, K.J. Luo, W. Luo, X.Q. Yan, Cross section measurements of \(^{27}\)Al(\(\gamma \), x)\(^{24}\)Na reactions as monitors for laser-driven bremsstrahlung \(\gamma \)-ray. Nucl. Phys. A 1043, 122834 (2024). https://doi.org/10.1016/j.nuclphysa.2024.122834

    Article  CAS  Google Scholar 

  108. R.J. Clarke, K.W.D. Ledingham, P. McKenna, L. Robson, T. McCanny, D. Neely, O. Lundh, F. Lindau, C.-G. Wahlström, P.T. Simpson, M. Zepf, Detection of short lived radioisotopes as a fast diagnostic for intense laser–solid interactions. Appl. Phys. Lett. 89(14), 141117 (2006). https://doi.org/10.1063/1.2358940

    Article  CAS  ADS  Google Scholar 

  109. ...F. Negoita, M. Gugiu, H. Petrascu, C. Petrone, D. Pietreanu, J. Fuchs, S. Chen, D. Higginson, L. Vassura, F. Hannachi, M. Tarisien, M. Versteegen, P. Antici, D. Balabanski, S. Balascuta, M. Cernaianu, I. Dancus, S. Gales, L. Neagu, C. Petcu, M. Risca, M. Toma, E. Turcu, D. Ursescu, Perspectives for neutron and gamma spectroscopy in high power laser driven experiments at ELI-NP. AIP Conf. Proc. 1645(1), 228–236 (2015). https://doi.org/10.1063/1.4909579

    Article  ADS  Google Scholar 

  110. L. Allen, M.W. Beijersbergen, R.J.C. Spreeuw, J.P. Woerdman, Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes. Phys. Rev. A 45, 8185–8189 (1992). https://doi.org/10.1103/PhysRevA.45.8185

    Article  CAS  ADS  PubMed  Google Scholar 

  111. B. Knyazev, V. Serbo, Beams of photons with nonzero projections of orbital angular momenta: new results. Phys. Uspekhi 61(5), 449 (2018). https://doi.org/10.3367/UFNe.2018.02.038306

    Article  CAS  ADS  Google Scholar 

  112. Y. Shen, X. Wang, Z. Xie, C. Min, X. Fu, Q. Liu, M. Gong, X. Yuan, Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light Sci. Appl. 8(1), 90 (2019). https://doi.org/10.1038/s41377-019-0194-2

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  113. G.F.Q. Rosen, P.I. Tamborenea, T. Kuhn, Interplay between optical vortices and condensed matter. Rev. Mod. Phys. 94(3), 035003 (2022). https://doi.org/10.1103/RevModPhys.94.035003

    Article  MathSciNet  ADS  Google Scholar 

  114. I.P. Ivanov, Promises and challenges of high-energy vortex states collisions. Progr. Part. Nucl. Phys. 127, 103987 (2022). https://doi.org/10.1016/j.ppnp.2022.103987

    Article  Google Scholar 

  115. U.D. Jentschura, V.G. Serbo, Generation of high-energy photons with large orbital angular momentum by compton backscattering. Phys. Rev. Lett. 106(1), 013001 (2011). https://doi.org/10.1103/PhysRevLett.106.013001

    Article  CAS  ADS  PubMed  Google Scholar 

  116. V. Petrillo, G. Dattoli, I. Drebot, F. Nguyen, Compton scattered X–gamma rays with orbital momentum. Phys. Rev. Lett. 117(12), 123903 (2016). https://doi.org/10.1103/PhysRevLett.117.123903

    Article  CAS  ADS  PubMed  Google Scholar 

  117. Y. Taira, T. Hayakawa, M. Katoh, Gamma-ray vortices from nonlinear inverse Thomson scattering of circularly polarized light. Sci. Rep. 7(1), 5018 (2017). https://doi.org/10.1038/s41598-017-05187-2

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  118. M. Katoh, M. Fujimoto, H. Kawaguchi, K. Tsuchiya, K. Ohmi, T. Kaneyasu, Y. Taira, M. Hosaka, A. Mochihashi, Y. Takashima, Angular momentum of twisted radiation from an electron in spiral motion. Phys. Rev. Lett. 118(9), 094801 (2017). https://doi.org/10.1103/PhysRevLett.118.094801

    Article  CAS  ADS  PubMed  Google Scholar 

  119. Y.Y. Chen, K.Z. Hatsagortsyan, C.H. Keitel, Generation of twisted \(\gamma \)-ray radiation by nonlinear Thomson scattering of twisted light. Matter Radiat. Extrem. (2019). https://doi.org/10.1063/1.5086347

    Article  Google Scholar 

  120. O.V. Bogdanov, P. Kazinski, G.Y. Lazarenko, Semiclassical probability of radiation of twisted photons in the ultrarelativistic limit. Phys. Rev. D 99(11), 116016 (2019). https://doi.org/10.1103/PhysRevD.99.116016

    Article  CAS  ADS  Google Scholar 

  121. Z.W. Lu, L. Guo, Z.Z. Li, M. Ababekri, F.Q. Chen, C.B. Fu, C. Lv, R.R. Xu, X.J. Kong, Y.F. Niu, J.X. Li, Manipulation of giant multipole resonances via vortex \(\gamma \) photons. Phys. Rev. Lett. 131, 202502 (2023). https://doi.org/10.1103/PhysRevLett.131.202502

    Article  CAS  ADS  PubMed  Google Scholar 

  122. Y. Xu, D.L. Balabanski, V. Baran, C. Iorga, C. Matei, Vortex photon induced nuclear reaction: mechanism, model, and application to determine the giant resonance of nuclear astrophysics interest. Phys. Rev. Lett. (2023) (Under review)

  123. V.G. Nedorezov, S.G. Rykovanov, A.B. Savelev, Nuclear photonics: results and prospects. Phys. Uspekhi 64(12), 1214 (2021). https://doi.org/10.3367/UFNr.2021.03.038960

    Article  CAS  ADS  Google Scholar 

  124. ...J.J. Valiente-Dobón, P.H. Regan, C. Wheldon, C.Y. Wu, N. Yoshinaga, K. Higashiyama, J.F. Smith, D. Cline, R.S. Chakrawarthy, R. Chapman, M. Cromaz, P. Fallon, S.J. Freeman, A. Görgen, W. Gelletly, A. Hayes, H. Hua, S.D. Langdown, I.Y. Lee, X. Liang, A.O. Macchiavelli, C.J. Pearson, Z. Podolyák, G. Sletten, R. Teng, D. Ward, D.D. Warner, A.D. Yamamoto, \( ^{136}\text{ Ba }\) studied via deep-inelastic collisions: identification of the \({(\nu {h}_{11/2})}_{10+}^{-2}\) isomer. Phys. Rev. C 69, 024316 (2004). https://doi.org/10.1103/PhysRevC.69.024316

    Article  CAS  ADS  Google Scholar 

  125. J.D.T. Arruda-Neto, S.B. Herdade, B.L. Berman, I.C. Nascimento, \({E}2\) giant resonances and an \({M}1\) component in the photofission of \(^{236}\text{ U }\). Phys. Rev. C 22, 1996–2007 (1980). https://doi.org/10.1103/PhysRevC.22.1996

    Article  CAS  ADS  Google Scholar 

  126. V. Nedorezov, E. Konobeevski, A. Polonski, V. Ponomarev, A. Savel’ev, G. Solodukhov, I. Tsymbalov, A. Turinge, S. Zuyev, D. Gorlova, Photoexcitation of spin isomers of In and Cd nuclei in the pigmy resonance region. Phys. Scr. 94(1), 015303 (2018). https://doi.org/10.1088/1402-4896/aaed6b

    Article  CAS  ADS  Google Scholar 

  127. ...S. Guo, B. Ding, X.H. Zhou, Y.B. Wu, J.G. Wang, S.W. Xu, Y.D. Fang, C.M. Petrache, E.A. Lawrie, Y.H. Qiang, Y.Y. Yang, H.J. Ong, J.B. Ma, J.L. Chen, F. Fang, Y.H. Yu, B.F. Lv, F.F. Zeng, Q.B. Zeng, H. Huang, Z.H. Jia, C.X. Jia, W. Liang, Y. Li, N.W. Huang, L.J. Liu, Y. Zheng, W.Q. Zhang, A. Rohilla, Z. Bai, S.L. Jin, K. Wang, F.F. Duan, G. Yang, J.H. Li, J.H. Xu, G.S. Li, M.L. Liu, Z. Liu, Z.G. Gan, M. Wang, Y.H. Zhang, Probing \(^{93m}\)Mo isomer depletion with an isomer beam. Phys. Rev. Lett. 128(24), 242502 (2022). https://doi.org/10.1103/PhysRevLett.128.242502

    Article  CAS  ADS  PubMed  Google Scholar 

Download references

Acknowledgements

This paper was supported by the National Key R &D Program of China (Grant No. 2022YFA1603300), the National Natural Science Foundation of China (Grant No. U2230133), the Hengyang Municipal Science and Technology Project (No. 202150054076), and the Romanian Ministry of Research, Innovation and Digitalization under Contract PN 23.21.01.06.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dimiter L. Balabanski or Wen Luo.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balabanski, D.L., Luo, W. Nuclear photonics and nuclear isomers. Eur. Phys. J. Spec. Top. (2024). https://doi.org/10.1140/epjs/s11734-024-01132-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjs/s11734-024-01132-3

Navigation