Skip to main content
Log in

Application of Immobilized β-Glucosidase from Candida boidinii in the Hydrolysis of Delignified Sugarcane Bagasse

  • ORIGINAL RESEARCH ARTICLE
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Candida boidinii is a methylotrophic yeast with wide geographical distribution. In the present study, the microorganism was isolated from the Bahian semiarid and the enzymatic extract containing β-glucosidase was obtained through submerged fermentation. Response surface methodology was employed to optimize of fermentation medium. The higher production of β-glucosidase was obtained after 71 h of fermentation in an optimized medium composed of 3.35% glucose, 1.78% yeast extract and 1% peptone. The optimum pH and temperature of enzymatic activity were 6.8 (citrate–phosphate buffer) and 71.7 °C, respectively. Salts tested (10 mM) CaCl2, Na2SO4 and ZnSO4 promotes the increase of 91%, 45% and 80% of activity, respectively. The enzyme retained 64% ± 2.3 of its initial activity after 1 h heating at 90 °C. The production of reducing sugars was 95.94% after 24 h of hydrolysis and, with the addition of metal ions, this value increased more than 2 times. Among the supports analyzed for immobilization, chitosan showed higher residual activity during reuse. The immobilized enzyme showed higher activity at 60 °C with pH 6 and preserved almost 100% of the initial activity after 30 min at 70 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Data generated and/or analyzed during the current study are available from the authors.

References

  1. Sakthi SS, Saranraj P, Rajasekar M (2011) Optimization for cellulase production by Aspergillus niger using paddy straw as substrate. IJASTR 1:69–85

    Google Scholar 

  2. Gusakov AV (2011) Alternatives to Trichoderma reesei in biofuel production. Trends Biotechnol 29:419–425. https://doi.org/10.1016/j.tibtech.2011.04.004

    Article  CAS  PubMed  Google Scholar 

  3. Li X, Xia J, Zhu X, Bilal M, Tan Z, Shi H (2019) Construction and characterization of bifunctional cellulases: Caldicellulosiruptor-sourced endoglucanase, CBM, and exoglucanase for efficient degradation of lignocellulose. Biochem Eng J 151:107363. https://doi.org/10.1016/j.bej.2019.107363

    Article  CAS  Google Scholar 

  4. Agrawal R, Verma AK, Satlewal A (2016) Application of nanoparticle immobilized thermostable β-glucosidase for improving the sugarcane juice properties. Innov Food Sci Emerging Technol 33:472–482. https://doi.org/10.1016/j.ifset.2015.11.024

    Article  CAS  Google Scholar 

  5. Kumar P, Ryan B, Henehan GTM (2017) β-glucosidase from Streptomyces griseus: nanoparticle immobilisation and alkyl glucoside synthesis. Protein Expression Purif 132:164–170. https://doi.org/10.1016/j.pep.2017.01.011

    Article  CAS  Google Scholar 

  6. Payne CM, Knott BC, Mayes HB, Hansson H, Himmel ME, Sandgren M, Stahlberg J, Beckham GT (2015) Fungal cellulases. Chem Rev 115:1308–1448. https://doi.org/10.1021/cr500351c

    Article  CAS  PubMed  Google Scholar 

  7. Sukumaran RK, Singhania RR, Pandey A (2005) Microbial cellulases-Production, applications and challenges. J Sci Ind Res 64:832–844

    CAS  Google Scholar 

  8. Żymańczyk-Duda E, Brzezińska-Rodak M, Klimek-Ochab M, Duda M, Zerka A (2017) Yeast as a versatile tool in biotechnology. In: Morata A, Loira I (eds) Yeast: industrial applications. IntechOpen, London, pp 3–40. https://doi.org/10.5772/intechopen.70130

    Chapter  Google Scholar 

  9. Bonciani T, De Vero L, Giannuzzi E, Verspohl A, Giudici P (2018) Qualitative and quantitative screening of the β-glucosidase activity in Saccharomyces cerevisiae and Saccharomyces uvarum strains isolated from refrigerated must. Lett Appl Microbiol 67:72–78. https://doi.org/10.1111/lam.12891

    Article  CAS  PubMed  Google Scholar 

  10. Geberekidan M, Zhang J, Liu ZL, Bao J (2018) Improved cellulosic ethanol production from corn stover with a low cellulase input using a β-glucosidase-producing yeast following a dry biorefining process. Bioprocess Biosyst Eng 42:297–304. https://doi.org/10.1007/s00449-018-2034-9

    Article  CAS  PubMed  Google Scholar 

  11. Santos RO, Cadete RM, Badotti F, Mouro A, Wallheim DO, Gomes FCO, Stambuk BU, Lachance M-A, Rosa CAC (2011) Candida queiroziae sp. nov., a cellobiose-fermenting yeast species isolated from rotting wood in Atlantic Rain Forest. Antonie Van Leeuwenhoek 99:635–642. https://doi.org/10.1007/s10482-010-9536-z

    Article  CAS  PubMed  Google Scholar 

  12. Kannan P, Shafreen M, Achudhan AB, Gupta A, Saleena LM (2023) A review on applications of β-glucosidase in food, brewery, pharmaceutical and cosmetic industries. Carbohyd Res 530:108855. https://doi.org/10.1016/j.carres.2023.108855

    Article  CAS  Google Scholar 

  13. Ahmed A, Nasim FU, Batool K, Bibi A (2017) Microbial β-Glucosidase: Sources, Production and Applications. J Appl Environ Microbiol 5:31–46. https://doi.org/10.12691/jaem-5-1-4

    Article  CAS  Google Scholar 

  14. Garbin AP, Garcia NFL, Cavalheiro GF, Silvestre MA, Rodrigues A, Da Paz MF, Fonseca GG, Leite RSR (2021) β-glucosidase from thermophilic fungus Thermoascus crustaceus: production and industrial potential. An Acad Bras Cienc 93:1–11. https://doi.org/10.1590/0001-3765202120191349

    Article  CAS  Google Scholar 

  15. Romo-Sánchez S, Arévalo-Villena M, Romero EG, Ramirez HL, Pérez AB (2014) Immobilization of β-glucosidase and its application for enhancement of aroma precursors in muscat wine. Food Bioprocess Technol 7:1381–1392. https://doi.org/10.1007/s11947-013-1161-1

    Article  CAS  Google Scholar 

  16. Su E, Xia T, Gao L, Dai Q, Zhang Z (2010) Immobilization of β-Glucosidase and its aroma-increasing effect on tea beverage. Food Bioprod Process 88:83–89. https://doi.org/10.1016/j.fbp.2009.04.001

    Article  CAS  Google Scholar 

  17. Hu S, Wang D, Hong J (2018) A simple method for beta-glucosidase immobilization and its application in soybean isoflavone glycosides hydrolysis. Biotechnol Bioprocess Eng 23:39–48. https://doi.org/10.1007/s12257-017-0434-3

    Article  CAS  Google Scholar 

  18. Chen T, Yang W, Guo Y, Yuan R, Xu L, Yan Y (2014) Enhancing catalytic performance of β-glucosidase via immobilization on metal ions chelated magnetic nanoparticles. Enzyme Microb Technol 63:50–57. https://doi.org/10.1016/j.enzmictec.2014.05.008

    Article  CAS  PubMed  Google Scholar 

  19. Baffi MA, Martin N, Tobal TM, Ferrarezi AL, Lago JHG, Boscolo M, Gomes E, Da-Silva R (2013) Purification and characterization of an ethanol-tolerant β-glucosidase from Sporidiobolus pararoseus and its potential for hydrolysis of wine aroma precursors. Appl Biochem Biotechnol 171:1681–1691. https://doi.org/10.1007/s12010-013-0471-0

    Article  CAS  PubMed  Google Scholar 

  20. Leite RSR, Alves-Prado HF, Cabral H, Pagnocca FC, Gomes E, Da-Silva R (2008) Production and characteristics comparison of crude β-glucosidases produced by microorganisms Thermoascus aurantiacus e Aureobasidium pullulans in agricultural wastes. Enzyme Microb Technol 43:391–395. https://doi.org/10.1016/j.enzmictec.2008.07.006

    Article  CAS  Google Scholar 

  21. López MC, Mateo JJ, Maicas S (2015) Screening of β-glucosidase and β-xylosidase activities in four non-Saccharomyces yeast isolates. J Food Sci 80:1696–1704. https://doi.org/10.1111/1750-3841.12954

    Article  CAS  Google Scholar 

  22. Pereira JC, Leite RSR, Prado HFA, Martins DAB, Gomes E, Silva R (2015) Production and characterization of β-glucosidase obtained by the solid state cultivation of the thermophilic fungus Thermomucor indicae-seudaticae N31. Appl Biochem Biotechnol 175:723–732. https://doi.org/10.1007/s12010-014-1332-1

    Article  CAS  Google Scholar 

  23. Su M, Hu Y, Cui Y, Wang Y, Yu H, Liu J, Dai W, Piao C (2020) Production of β-glucosidase from okara fermentation using Kluyveromyces marxianus. J Food Sci Technol 58:366–376. https://doi.org/10.1007/s13197-020-04550-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu D, Zhang R, Yang X, Zhang Z, Song S, Miao Y, Shen Q (2012) Characterization of a thermostable β-glucosidase from Aspergillus fumigatus Z5, and its functional expression in Pichia pastoris X33. Microb Cell Fact 11:1–15. https://doi.org/10.1186/1475-2859-11-25

    Article  CAS  Google Scholar 

  25. Camiolo S, Porru C, Benítez-Cabello A, Rodríguez-Gómez F, Calero-Delgado B, Porceddu A, Budroni M, Mannazzu I, Jiménez-díaz R, Arroyo-López FN (2017) Genome overview of eight Candida boidinii strains isolated from human activities and wild environments. Stand Genomic Sci 12:1–14. https://doi.org/10.1186/s40793-017-0281-z

    Article  CAS  Google Scholar 

  26. Campus M, Değirmencioğlu N, Comunian R (2018) Technologies and trends to improve table olive quality and safety. Front Microbiol 9:617. https://doi.org/10.3389/fmicb.2018.00617

    Article  PubMed  PubMed Central  Google Scholar 

  27. Pino A, Vaccalluzzo A, Solieri L, Romeo FV, Todaro A, Caggia C, Arroyo-López FN, Bautista-Gallego J, Randazzo CL (2019) Effect of sequential inoculum of beta-glucosidase positive and probiotic strains on brine fermentation to obtain low salt table olives. Front Microbiol 8:174. https://doi.org/10.3389/fmicb.2019.00174

    Article  Google Scholar 

  28. Porru C, Rodríguez-Gómez F, Benítez-Cabello A, Jiménez-Díaz R, Zara G, Budroni M, Mannazzu I, Arroyo-López FN (2018) Genotyping, identification and multifunctional features of yeasts associated to Bosana naturally black table olive fermentations. Food Microbiol 69:33–42. https://doi.org/10.1016/j.fm.2017.07.010

    Article  CAS  PubMed  Google Scholar 

  29. Rodríguez-Gómez F, Romero-Gil V, Bautista-Gallego J, Garrido-Fernández A, Arroyo-López FN (2012) Multivariate analysis to discriminate yeast strains with technological applications in table olive processing. World J Microbiol Biotechnol 28:1761–1770. https://doi.org/10.1007/s11274-011-0990-1

    Article  CAS  PubMed  Google Scholar 

  30. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1016/0003-2697(76)90527-3

    Article  CAS  PubMed  Google Scholar 

  31. Matsuura M, Sasaki J, Murao S (1995) Studies on β-glucosidases from soybeans that hydrolyze daidzin and genistin: Isolation and characterization of an isozyme. Biosci Biotechnol Biochem 59:1623–1627. https://doi.org/10.1271/bbb.59.1623

    Article  CAS  Google Scholar 

  32. Oliveira JM, Fernandes P, Benevides RG, Assis SA (2020) Characterization and immobilization of protease secreted by the fungus Moorella speciosa. 3 Biotech 10:419. https://doi.org/10.1007/s13205-020-02412-0

    Article  PubMed  PubMed Central  Google Scholar 

  33. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428. https://doi.org/10.1021/ac60147a030

    Article  CAS  Google Scholar 

  34. Weetall HH (1993) Preparation of immobilized proteins covalently coupled through silane coupling agents to inorganic supports. Appl Biochem Biotechnol 41:157–188. https://doi.org/10.1007/BF02916421

    Article  CAS  PubMed  Google Scholar 

  35. Jung YR, Shin HY, Song YS, Kim SB, Kim SW (2012) Enhancement of immobilized enzyme activity by pretreatment of β-glucosidase with cellobiose and glucose. J Ind Eng Chem 18:702–706. https://doi.org/10.1016/j.jiec.2011.11.133

    Article  CAS  Google Scholar 

  36. Libertino S, Giannazzo F, Aiello V, Scandurra A, Sinatra F, Renis M, Fichera M (2008) XPS and AFM characterization of the enzyme glucose oxidase immobilized on SiO2 Surfaces. Langmuir 24:1965–1972. https://doi.org/10.1021/la7029664

    Article  CAS  PubMed  Google Scholar 

  37. Singh RK, Zhang Y-W, Nguyen N-P-T, Jeya M, Lee J-K (2011) Covalent immobilization of β-1,4-glucosidase from Agaricus arvensis onto functionalized silicon oxide nanoparticles. Appl Microbiol Biotechnol 89:337–344. https://doi.org/10.1007/s00253-010-2768-z

    Article  CAS  PubMed  Google Scholar 

  38. Maicas S, Lilao J, Mateo JJ (2017) Characterization of a β-glucosidase isolated from an alpeorujo strain of Candida adriatica. Food Biotechnol 31:114–127. https://doi.org/10.1080/08905436.2017.1303388

    Article  CAS  Google Scholar 

  39. Drider D, Chemardin P, Arnaud A, Galzy P (1993) Isolation and characterization of the exocellular β-glucosidase of Candida cacaoi: Possible use in carbohydrates degradation. LWT Food Sci Technol 26:198–204. https://doi.org/10.1006/fstl.1993.1044

    Article  CAS  Google Scholar 

  40. Thongekkaew J, Fujii T, Masaki K (2016) Candida easanensis strain JK-8 β-glucosidase: a glucose-tolerant enzyme with high specific activity for laminarin. Curr Chem Biol 10:117–126. https://doi.org/10.2174/2212796810666160816142046

    Article  CAS  Google Scholar 

  41. Thongekkaew J, Fujii T, Masaki K, Koyama K (2018) Evaluation of Candida easanensis JK8 β-glucosidase with potentially hydrolyse non-volatile glycosides of wine aroma precursors. Nat Prod Res 33:3563–3567. https://doi.org/10.1080/14786419.2018.1481845

    Article  CAS  PubMed  Google Scholar 

  42. Han X, Qing X, Yang S, Li R, Zhan J, You Y, Huang W (2021) Study on the diversity of non-Saccharomyces yeasts in Chinese wine regions and their potential in improving wine aroma by β-glucosidase activity analyses. Food Chem 360:129886. https://doi.org/10.1016/j.foodchem.2021.129886

    Article  CAS  PubMed  Google Scholar 

  43. Bu Y, Alkotaini B, Salunke BK, Deshmukh AR, Saha P, Kim BS (2019) Direct ethanol production from cellulose by consortium of Trichoderma reesei and Candida molischiana. Green Process Synth 8:416–420. https://doi.org/10.1515/gps-2019-0009

    Article  CAS  Google Scholar 

  44. Janbon G, Derancourt J, Chemardin P, Arnaud A, Galzy P (1995) A very stable β-glucosidase from a Candida molischiana mutant strain: Enzymatic properties, sequencing, and homology with other yeast β-glucosidases. Biosci Biotechnol Biochem 59:1320–1322. https://doi.org/10.1271/bbb.59.1320

    Article  CAS  PubMed  Google Scholar 

  45. Rokni Y, Abouloifa H, Bellaouchi R, Hasnaoui I, Gaamouche S, Lamzira Z, Salah RBEN, Saalaoui E, Ghabbour N, Asehraou A (2021) Characterization of β-glucosidase of Lactobacillus plantarum FSO1 and Candida pelliculosa L18 isolated from traditional fermented green olive. J Genet Eng Biotechnol 19:1–14. https://doi.org/10.1186/s43141-021-00213-3

    Article  Google Scholar 

  46. Barrilli ÉT, Tadioto V, Milani LM, Deoti JR, Fogolari O, Müller C, Barros KO, Rosa CA, Santos AA, Stambuk BU, Treichel H, Alves SL (2020) Biochemical analysis of cellobiose catabolism in Candida pseudointermedia strains isolated from rotten wood. Arch Microbiol 202:1729–1739. https://doi.org/10.1007/s00203-020-01884-1

    Article  CAS  PubMed  Google Scholar 

  47. Liu ZL, Weber SA, Cotta MA, Li S-Z (2012) A new β-glucosidase producing yeast for lower-cost cellulosic ethanol production from xylose-extracted corncob residues by simultaneous saccharification and fermentation. Bioresour Technol 104:410–416. https://doi.org/10.1016/j.biortech.2011.10.099

    Article  CAS  PubMed  Google Scholar 

  48. Adhyaru DN, Bhatt NS, Modi HA (2015) Optimization of upstream and downstream process parameters for cellulase-poor-thermo-solvent-stable xylanase production and extraction by Aspergillus tubingensis FDHN1. Bioresources and Bioprocessing 2:1–14. https://doi.org/10.1186/s40643-014-0029-1

    Article  Google Scholar 

  49. El-Ghonemy DH (2021) Optimization of extracellular ethanol tolerant β-glucosidase production from a newly isolated Aspergillus sp. DHE7 via solid state fermentation using jojoba meal as substrate: purification and biochemical characterization for biofuel preparation. J Genet Eng Biotechnol 19:1–18. https://doi.org/10.1186/s43141-021-00144-z

    Article  Google Scholar 

  50. Baffi MA, Tobal T, Lago JHG, Boscolo M, Gomes E, Da-Silva R (2013) Wine aroma improvement using a β-glucosidase preparation from Aureobasidium pullulans. Appl Biochem Biotechnol 169:493–501. https://doi.org/10.1007/s12010-012-9991-2

    Article  CAS  PubMed  Google Scholar 

  51. Baghalabadi V, Doucette AA (2020) Mass spectrometry profiling of low molecular weight proteins and peptides isolated by acetone precipitation. Anal Chim Acta 1138:38–48. https://doi.org/10.1016/j.aca.2020.08.057

    Article  CAS  PubMed  Google Scholar 

  52. Crowell AMJ, Wall MJ, Doucette AA (2013) Maximizing recovery of water-soluble proteins through acetone precipitation. Anal Chim Acta 796:48–54. https://doi.org/10.1016/j.aca.2013.08.005

    Article  CAS  PubMed  Google Scholar 

  53. Soares PAG, Vaz AFM, Correia MTS, Pessoa JRA, Carneiro-Da-Cunha MG (2012) Purification of bromelain from pineapple wastes by ethanol precipitation. Sep Purif Technol 98:389–395. https://doi.org/10.1016/j.seppur.2012.06.042

    Article  CAS  Google Scholar 

  54. Thakur N, Kumar A, Sharma A, Bhalla TC, Kumar D (2018) Purification and characterization of alkaline, thermostable and organic solvent stable protease from a mutant of Bacillus sp. Biocatal Agric Biotechnol 16:217–224. https://doi.org/10.1016/j.bcab.2018.08.005

    Article  Google Scholar 

  55. Novák P, Havlícek V (2016) Protein extraction and precipitation. In: Ciborowski P, Silberring J (eds) Proteomic profiling and analytical chemistry, 2nd edn. Elsevier, Boston, pp 51–62. https://doi.org/10.1016/B978-0-444-63688-1.00004-5

    Chapter  Google Scholar 

  56. Robinson PK (2015) Enzymes: principles and biotechnological applications. Essays Biochem 59:1–41. https://doi.org/10.1042/BSE0590001

    Article  PubMed  PubMed Central  Google Scholar 

  57. Tu M, Zhang X, Kurabi A, Gilkes N, Mabee W, Saddler J (2006) Immobilization of β-glucosidase on Eupergit C for lignocellulose hydrolysis. Biotechnol Lett 28:151–156. https://doi.org/10.1007/s10529-005-5328-3

    Article  CAS  PubMed  Google Scholar 

  58. Kuo H-P, Wang R, Huang C-Y, Lai J-T, Lo Y-C, Huang S-T (2018) Characterization of an extracellular β-glucosidase from Dekkera bruxellensis for resveratrol production. J Food Drug Anal 26:163–171. https://doi.org/10.1016/j.jfda.2016.12.016

    Article  CAS  PubMed  Google Scholar 

  59. Liu ZL, Weber SA, Cotta MA (2013) Isolation and characterization of a β-glucosidase from a Clavispora strain with potential applications in bioethanol production from cellulosic materials. Bioenergy Res 6:65–74. https://doi.org/10.1007/s12155-012-9236-9

    Article  CAS  Google Scholar 

  60. Restuccia C, Muccilli S, Palmeri R, Randazzo CL, Caggia C, Spagna G (2011) An alkaline β-glucosidase isolated from an olive brine strain of Wickerhamomyces anomalus. FEMS Yeast Res 11:487–493. https://doi.org/10.1111/j.1567-1364.2011.00738.x

    Article  CAS  PubMed  Google Scholar 

  61. Wang X, Liu ZL, Weber SA, Zhang X (2016) Two new native β-glucosidases from Clavispora NRRL Y-50464 confer its dual function as cellobiose fermenting ethanologenic yeast. PLoS ONE 11:1–19. https://doi.org/10.1371/journal.pone.0151293

    Article  CAS  Google Scholar 

  62. Gomes I, Gomes J, Gomes DJ, Steiner W (2000) Simultaneous production of high activities of thermostable endoglucanase and β-glucosidase by the wild thermophilic fungus Thermoascus aurantiacus. Appl Microbiol Biotechnol 53:461–468. https://doi.org/10.1007/s002530051642

    Article  CAS  PubMed  Google Scholar 

  63. González-Pombo P, Fariña L, Carrau F, Batista-Viera F, Brena BM (2011) A novel extracellular β-glucosidase from Issatchenkia terricola: Isolation, immobilization and application for aroma enhancement of white Muscat wine. Process Biochem 46:385–389. https://doi.org/10.1016/j.procbio.2010.07.016

    Article  CAS  Google Scholar 

  64. Rigoldi F, Donini S, Redaelli A, Parisini E, Gautieri A (2018) Review: Engineering of thermostable enzymes for industrial applications. APL Bioeng 2:011501. https://doi.org/10.1063/1.4997367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ratuchne A, Knob A (2021) A new and unusual β-glucosidase from Aspergillus fumigatus: catalytic activity at high temperatures and glucose tolerance. Biocatal Agric Biotechnol 35:102064. https://doi.org/10.1016/j.bcab.2021.102064

    Article  CAS  Google Scholar 

  66. Mohsin I, Poudel N, Li D-C, Papageorgiou AC (2019) Crystal structure of a gh3 β-glucosidase from the thermophilic fungus Chaetomium thermophilum. Int J Mol Sci 20:1–15. https://doi.org/10.3390/ijms20235962

    Article  CAS  Google Scholar 

  67. Srivastava N, Srivastava M, Mishra PK, Gupta VK, Molina G, Rodriguez-Couto S, Manikanta A, Ramteke PW (2018) Applications of fungal cellulases in biofuel production: advances and limitations. Renew Sustain Energy Rev 82:2379–2386. https://doi.org/10.1016/j.rser.2017.08.074

    Article  CAS  Google Scholar 

  68. Franco-Cirigliano MN, Rezende RC, Gravina-Oliveira MP, Pereira PHF, Nascimento RP, Bom EP, Macrae A, Coelho RRR (2013) Streptomyces misionensis PESB-25 produces a thermoacidophilic endoglucanase using sugarcane bagasse and corn steep liquor as the sole organic substrates. BioMed Res Int 2013:1–9. https://doi.org/10.1155/2013/584207

    Article  CAS  Google Scholar 

  69. Vasconcellos VM, Tardioli PW, Giordano RLC, Farinas CS (2015) Influência dos íons metálicos na atividade de celulases e no processo de sacarificação da biomassa. In: Anais do Simpósio Nacional de Bioprocessos e Simpósio de Hidrólise Enzimática de Biomassas (SHEB), Galoá, Campinas. https://doi.org/10.17648/sinaferm-2015-31951

  70. Chauvaux S, Beguin P, Aubert J-P, Bhat KM, Gow LA, Wood TM, Bairoch A (1990) Calcium-binding affinity and calcium-enhanced activity of Clostridium thermocellum endoglucanase D. Biochem J 265:261–265. https://doi.org/10.1042/bj2650261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Pereira J de C, Giese EC, Moretti MM de S, Gomes AC dos S, Perrone OM, Boscolo M, Silva R, Gomes E, Martins DAB (2017) Effect of metal ions, chemical agents and organic compounds on lignocellulolytic enzymes activities. In: Senturk M (Ed) Enzyme inhibitors and activators [Internet]. InTech. https://doi.org/10.5772/65934

  72. Ahmed SA, El-shayeb NMA, Hashem AM, Saleh SA, Abdel-Fattah AF (2013) Biochemical studies on immobilized fungal β-glucosidase. Braz J Chem Eng 30:747–758. https://doi.org/10.1590/S0104-66322013000400007

    Article  CAS  Google Scholar 

  73. Bai H, Wang H, Sun J, Irfan M, Han M, Huang Y, Han X, Yang Q (2013) Production, purification and characterization of novel beta glucosidase from newly isolated Penicillium simplicissimum H-11 in submerged fermentation. EXCLI J 12:528–540

    PubMed  PubMed Central  Google Scholar 

  74. Chen H-L, Chen Y-C, Lu M-YJ, Chang J-J, Wang H-TC, Ke H-M, Wang T-Y, Ruan S-K, Wang T-Y, Hung K-Y, Cho H-Y, Lin W-T, Shih M-C, Li W-H (2012) A highly efficient β-glucosidase from the buffalo rumen fungus Neocallimastix patriciarum W5. Biotechnol Biofuels 5:1–10. https://doi.org/10.1186/1754-6834-5-24

    Article  CAS  Google Scholar 

  75. Joo A-R, Jeya M, Lee K-M, Lee K-M, Moon H-J, Kim Y-S, Lee J-K (2010) Production and characterization of β-1,4-glucosidase from a strain of Penicillium pinophilum. Process Biochem 45:851–858. https://doi.org/10.1016/j.procbio.2010.02.005

    Article  CAS  Google Scholar 

  76. Andrade LGA, Maitan-Alfenas GP, Morgan T, Gomes KS, Falkoski DL, Alfenas RF, Guimarães VM (2017) Sugarcane bagasse saccharification by purified β-glucosidases from Chrysoporthe cubensis. Biocatal Agric Biotechnol 12:199–205. https://doi.org/10.1016/j.bcab.2017.10.007

    Article  Google Scholar 

  77. Verma ML, Chaudhary R, Tsuzuki T, Barrow CJ, Puri M (2013) Immobilization of β-glucosidase on a magnetic nanoparticle improves thermostability: Application in cellobiose hydrolysis. Bioresour Technol 135:2–6. https://doi.org/10.1016/j.biortech.2013.01.047

    Article  CAS  PubMed  Google Scholar 

  78. Zhao F, Li H, Wang X, Wu L, Hou T, Guan J, Jiang Y, Xu H, Mu X (2015) CRGO/alginate microbeads: an enzyme immobilization system and its potential application for a continuous enzymatic reaction. J Mater Chem B 3:9315–9322. https://doi.org/10.1039/c5tb01508a

    Article  CAS  PubMed  Google Scholar 

  79. Almeida LEA, Fernandes P, Assis SAA (2022) Immobilization of fungal cellulases highlighting β-glucosidase: techniques, supports, chemical, and physical changes. Protein J 41:274–292. https://doi.org/10.1007/s10930-022-10048-7

    Article  CAS  Google Scholar 

  80. Coutinho TC, Rojas MJ, Tardioli PW, Paris EC, Farinas CS (2018) Nanoimmobilization of β-glucosidase onto hydroxyapatite. Int J Biol Macromol 119:1042–1051. https://doi.org/10.1016/j.ijbiomac.2018.08.042

    Article  CAS  PubMed  Google Scholar 

  81. Nagy F, Szabó K, Bugovics P, Hornyánszky G (2019) Bisepoxide-activated hollow silica microspheres for covalent immobilization of lipase from Burkholderia cepacia. Period Polytech Chem Eng 63:1–11. https://doi.org/10.3311/PPch.12665

    Article  Google Scholar 

  82. Oliveira JM, Fernandes P, Benevides RG, Assis SA (2020) Production, characterization, and immobilization of protease from the yeast Rhodotorula oryzicola. Biotechnol Appl Biochem 68:1–11. https://doi.org/10.1002/bab.2023

    Article  CAS  Google Scholar 

  83. Dash A, Banerjee R (2021) Exploring indigenously produced celite-immobilized Rhizopus oryzae NRRL 3562-lipase for biodiesel production. Energy 222:119950. https://doi.org/10.1016/j.energy.2021.119950

    Article  CAS  Google Scholar 

  84. Datta S, Christena LR, Rajaram YRS (2013) Enzyme immobilization: an overview on techniques and support materials. 3 Biotech 3:1–9. https://doi.org/10.1007/s13205-012-0071-7

    Article  PubMed  Google Scholar 

  85. Rafiee F, Rezaee M (2021) Different strategies for the lipase immobilization on the chitosan based supports and their applications. Int J Biol Macromol 179:170–195. https://doi.org/10.1016/j.ijbiomac.2021.02.198

    Article  CAS  PubMed  Google Scholar 

  86. Thangaraj B, Jia Z, Dai L, Liu D, Du W (2019) Effect of silica coating on Fe3O4 magnetic nanoparticles for lipase immobilization and their application for biodiesel production. Arabian J Chem 12:4694–4706. https://doi.org/10.1016/j.arabjc.2016.09.004

    Article  CAS  Google Scholar 

  87. Zhang J, Wang D, Pan J, Wang J, Zhao H, Li Q, Zhou X (2014) Efficient resveratrol production by immobilized β-glucosidase on cross-linked chitosan microsphere modified by L-lysine. J Mol Catal B: Enzym 104:29–34. https://doi.org/10.1016/j.molcatb.2014.03.003

    Article  CAS  Google Scholar 

  88. Oliveira RL, Dias JL, Silva OS, Porto TS (2018) Immobilization of pectinase from Aspergillus aculeatus in alginate beads and clarification of apple and umbu juices in a packed bed reactor. Food Bioprod Process 109:9–18. https://doi.org/10.1016/j.fbp.2018.02.005

    Article  CAS  Google Scholar 

  89. Nishida VS, Oliveira RF, Brugnari T, Correa RCG, Peralta RA, Castoldi R, Souza CGM, Bracht A, Peralta RM (2018) Immobilization of Aspergillus awamori β-glucosidase on commercial gelatin: An inexpensive and efficient process. Int J Biol Macromol 111:1206–1213. https://doi.org/10.1016/j.ijbiomac.2018.01.146

    Article  CAS  PubMed  Google Scholar 

  90. Sannino F, Costantini A, Ruffo F, Aronne A, Venezia V, Califano V (2020) Covalent immobilization of β-glucosidase into mesoporous silica nanoparticles from anhydrous acetone enhances its catalytic performance. Nanomaterials 10:1–14. https://doi.org/10.3390/nano10010108

    Article  CAS  Google Scholar 

  91. Tan IS, Lee KT (2015) Immobilization of β-glucosidase from Aspergillus niger on κ-carrageenan hybrid matrix and its application on the production of reducing sugar from macroalgae cellulosic residue. Bioresour Technol 184:386–394. https://doi.org/10.1016/j.biortech.2014.10.146

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Biotechnology Graduate Program of State University of Feira de Santana (UEFS/FIOCRUZ), the Coordination for the Improvement of Higher Education Personnel (CAPES) for a doctoral scholarship (88882.447813/2019-01), the Bahia State Research Support Foundation (FAPESB), and the Brazilian National Council for Scientific and Technological (CNPq).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Larissa E. S. Almeida and Sandra A. Assis. The first draft of the manuscript was written by Larissa E. S. Almeida and and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Sandra Aparecida de Assis.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva Almeida, L.E., de Assis, S.A. Application of Immobilized β-Glucosidase from Candida boidinii in the Hydrolysis of Delignified Sugarcane Bagasse. Indian J Microbiol (2024). https://doi.org/10.1007/s12088-024-01223-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12088-024-01223-8

Keywords

Navigation