Skip to main content
Log in

Invisible Inhabitants of Plants and a Sustainable Planet: Diversity of Bacterial Endophytes and their Potential in Sustainable Agriculture

  • REVIEW ARTICLE
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Uncontrolled usage of chemical fertilizers, climate change due to global warming, and the ever-increasing demand for food have necessitated sustainable agricultural practices. Removal of ever-increasing environmental pollutants, treatment of life-threatening diseases, and control of drug-resistant pathogens are also the need of the present time to maintain the health and hygiene of nature, as well as human beings. Research on plant–microbe interactions is paving the way to ameliorate all these sustainably. Diverse bacterial endophytes inhabiting the internal tissues of different parts of the plants promote the growth and development of their hosts by different mechanisms, such as through nutrient acquisition, phytohormone production and modulation, protection from biotic or abiotic challenges, assisting in flowering and root development, etc. Notwithstanding, efficient exploitation of endophytes in human welfare is hindered due to scarce knowledge of the molecular aspects of their interactions, community dynamics, in-planta activities, and their actual functional potential. Modern “-omics-based” technologies and genetic manipulation tools have empowered scientists to explore the diversity, dynamics, roles, and functional potential of endophytes, ultimately empowering humans to better use them in sustainable agricultural practices, especially in future harsh environmental conditions. In this review, we have discussed the diversity of bacterial endophytes, factors (biotic as well as abiotic) affecting their diversity, and their various plant growth-promoting activities. Recent developments and technological advancements for future research, such as “-omics-based” technologies, genetic engineering, genome editing, and genome engineering tools, targeting optimal utilization of the endophytes in sustainable agricultural practices, or other purposes, have also been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

ACC:

1-Aminocyclopropane-1-carboxylate

BNF:

Biological nitrogen fixation

ET:

Ethylene

IAA:

Indole-3-acetic acid

ISR:

Induced systemic resistance

JA:

Jasmonic acid

PHAs:

Polyhydroxyalkanoates

SA:

Salicylic acid

References

  1. Mandal A, Sarkar B, Mandal S et al (2020) Impact of agrochemicals on soil health. Agrochemicals detection, treatment and remediation. Elsevier, Amsterdam, pp 161–187

    Chapter  Google Scholar 

  2. Baweja P, Kumar S, Kumar G (2020) Fertilizers and pesticides: their impact on soil health and environment. In: Giri B, Varma A (eds) Soil health. Springer, Cham, pp 265–285

    Chapter  Google Scholar 

  3. Good AG, Beatty PH (2011) Fertilizing nature: a tragedy of excess in the commons. PLoS Biol 9:e1001124. https://doi.org/10.1371/journal.pbio.1001124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bashir M, Ali S, Ghauri M et al (2013) Impact of excessive nitrogen fertilizers on the environment and associated mitigation strategies. Asian J Microbiol Biotechnol Environ Sci 15:213–221

    CAS  Google Scholar 

  5. Reddy PP (2015) Impacts of climate change on agriculture. Climate resilient agriculture for ensuring food security. Springer, New Delhi, pp 43–90

    Chapter  Google Scholar 

  6. Hulme PE (2017) Climate change and biological invasions: evidence, expectations, and response options. Biol Rev 92:1297–1313. https://doi.org/10.1111/brv.12282

    Article  PubMed  Google Scholar 

  7. Hingst MC, McQuiggan RW, Peters CN et al (2023) Surface water-groundwater connections as pathways for inland salinization of coastal aquifers. Ground Water 61:626–638. https://doi.org/10.1111/gwat.13274

    Article  CAS  PubMed  Google Scholar 

  8. De Bary A (1866) Morphologie und Physiologie der Pilze, Flechten und Myxomyceten. Verlag von Wilhelm Engelmann, Leipzig

    Book  Google Scholar 

  9. Hallmann J, Quadt-Hallmann A, Mahaffee WF, Kloepper JW (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43:895–914. https://doi.org/10.1139/m97-131

    Article  CAS  Google Scholar 

  10. Kloepper JW, McInroy JA, Liu K, Hu C-H (2013) Symptoms of fern distortion syndrome resulting from inoculation with opportunistic endophytic fluorescent pseudomonas spp. PLoS ONE 8:e58531. https://doi.org/10.1371/journal.pone.0058531

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Coombs JT, Franco CMM (2003) Isolation and identification of actinobacteria from surface-sterilized wheat roots. Appl Environ Microbiol 69:5603–5608. https://doi.org/10.1128/AEM.69.9.5603-5608.2003

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Reiter B, Pfeifer U, Schwab H, Sessitsch A (2002) Response of endophytic bacterial communities in potato plants to infection with Erwinia carotovora subsp. atroseptica. Appl Environ Microbiol 68:2261–2268. https://doi.org/10.1128/AEM.68.5.2261-2268.2002

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. Scherling C, Ulrich K, Ewald D, Weckwerth W (2009) A metabolic signature of the beneficial interaction of the endophyte Paenibacillus sp. isolate and in vitro-grown poplar plants revealed by metabolomics. MPMI 22:1032–1037. https://doi.org/10.1094/MPMI-22-8-1032

    Article  CAS  PubMed  Google Scholar 

  14. Sessitsch A, Hardoim P, Döring J et al (2012) Functional characteristics of an endophyte community colonizing rice roots as revealed by metagenomic analysis. MPMI 25:28–36. https://doi.org/10.1094/MPMI-08-11-0204

    Article  CAS  PubMed  Google Scholar 

  15. Harrison JG, Griffin EA (2020) The diversity and distribution of endophytes across biomes, plant phylogeny and host tissues: how far have we come and where do we go from here? Environ Microbiol 22:2107–2123. https://doi.org/10.1111/1462-2920.14968

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hardoim PR, van Overbeek LS, Berg G et al (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79:293–320. https://doi.org/10.1128/MMBR.00050-14

    Article  PubMed  PubMed Central  Google Scholar 

  17. Papik J, Folkmanova M, Polivkova-Majorova M et al (2020) The invisible life inside plants: deciphering the riddles of endophytic bacterial diversity. Biotechnol Adv 44:107614. https://doi.org/10.1016/j.biotechadv.2020.107614

    Article  CAS  PubMed  Google Scholar 

  18. Tremouillaux-Guiller J, Rohr T, Rohr R, Huss VAR (2002) Discovery of an endophytic alga in Ginkgo biloba. Am J Bot 89:727–733. https://doi.org/10.3732/ajb.89.5.727

    Article  PubMed  Google Scholar 

  19. Müller P, Döring M (2009) Isothermal DNA amplification facilitates the identification of a broad spectrum of bacteria, fungi and protozoa in Eleutherococcus sp. plant tissue cultures. Plant Cell Tissue Organ Cult PCTOC 98:35–45. https://doi.org/10.1007/s11240-009-9536-8

    Article  CAS  Google Scholar 

  20. Compant S, Mitter B, Colli-Mull JG et al (2011) Endophytes of grapevine flowers, berries, and seeds: identification of cultivable bacteria, comparison with other plant parts, and visualization of niches of colonization. Microb Ecol 62:188–197. https://doi.org/10.1007/s00248-011-9883-y

    Article  ADS  PubMed  Google Scholar 

  21. Elmagzob AAH, Ibrahim MM, Zhang G-F (2019) Seasonal diversity of endophytic bacteria associated with Cinnamomum camphora (L.) Presl. Diversity 11:112. https://doi.org/10.3390/d11070112

    Article  CAS  Google Scholar 

  22. Germida JJ, Siciliano SD, Renato de Freitas J, Seib AM (1998) Diversity of root-associated bacteria associated with field-grown canola (Brassica napus L.) and wheat (Triticum aestivum L.). FEMS Microbiol Ecol 26:43–50. https://doi.org/10.1111/j.1574-6941.1998.tb01560.x

    Article  CAS  Google Scholar 

  23. Sessitsch A, Reiter B, Pfeifer U, Wilhelm E (2002) Cultivation-independent population analysis of bacterial endophytes in three potato varieties based on eubacterial and Actinomycetes-specific PCR of 16S rRNA genes. FEMS Microbiol Ecol 39:23–32. https://doi.org/10.1111/j.1574-6941.2002.tb00903.x

    Article  CAS  PubMed  Google Scholar 

  24. Hodgson S, de Cates C, Hodgson J et al (2014) Vertical transmission of fungal endophytes is widespread in forbs. Ecol Evol 4:1199–1208. https://doi.org/10.1002/ece3.953

    Article  PubMed  PubMed Central  Google Scholar 

  25. Truyens S, Weyens N, Cuypers A, Vangronsveld J (2015) Bacterial seed endophytes: genera, vertical transmission and interaction with plants: Bacterial seed endophytes. Environ Microbiol Rep 7:40–50. https://doi.org/10.1111/1758-2229.12181

    Article  Google Scholar 

  26. Reinhold-Hurek B, Hurek T (1998) Life in grasses: diazotrophic endophytes. Trends Microbiol 6:139–144. https://doi.org/10.1016/S0966-842X(98)01229-3

    Article  CAS  PubMed  Google Scholar 

  27. Ryan RP, Germaine K, Franks A et al (2008) Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett 278:1–9. https://doi.org/10.1111/j.1574-6968.2007.00918.x

    Article  CAS  PubMed  Google Scholar 

  28. Hardoim PR, van Overbeek LS, van Elsas JD (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16:463–471. https://doi.org/10.1016/j.tim.2008.07.008

    Article  CAS  PubMed  Google Scholar 

  29. Afzal I, Shinwari ZK, Sikandar S, Shahzad S (2019) Plant beneficial endophytic bacteria: mechanisms, diversity, host range and genetic determinants. Microbiol Res 221:36–49. https://doi.org/10.1016/j.micres.2019.02.001

    Article  CAS  PubMed  Google Scholar 

  30. Santoyo G, Moreno-Hagelsieb G, del Carmenorozco-Mosqueda MA, Glick BR (2016) Plant growth-promoting bacterial endophytes. Microbiol Res 183:92–99. https://doi.org/10.1016/j.micres.2015.11.008

    Article  CAS  PubMed  Google Scholar 

  31. Gouda S, Das G, Sen SK et al (2016) Endophytes: a treasure house of bioactive compounds of medicinal importance. Front Microbiol. https://doi.org/10.3389/fmicb.2016.01538

    Article  PubMed  PubMed Central  Google Scholar 

  32. Germaine KJ, Keogh E, Ryan D, Dowling DN (2009) Bacterial endophyte-mediated naphthalene phytoprotection and phytoremediation. FEMS Microbiol Lett 296:226–234. https://doi.org/10.1111/j.1574-6968.2009.01637.x

    Article  CAS  PubMed  Google Scholar 

  33. Germaine KJ, Liu X, Cabellos GG et al (2006) Bacterial endophyte-enhanced phytoremediation of the organochlorine herbicide 2,4-dichlorophenoxyacetic acid: Bacterial endophyte-enhanced phytoremediation. FEMS Microbiol Ecol 57:302–310. https://doi.org/10.1111/j.1574-6941.2006.00121.x

    Article  CAS  PubMed  Google Scholar 

  34. Ullah A, Heng S, Munis MFH et al (2015) Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: a review. Environ Exp Bot 117:28–40. https://doi.org/10.1016/j.envexpbot.2015.05.001

    Article  CAS  Google Scholar 

  35. Huang H, Zhao Y, Fan L et al (2020) Improvement of manganese phytoremediation by Broussonetia papyrifera with two plant growth promoting (PGP) Bacillus species. Chemosphere 260:127614. https://doi.org/10.1016/j.chemosphere.2020.127614

    Article  CAS  PubMed  Google Scholar 

  36. Smith SA, Tank DC, Boulanger L-A et al (2008) Bioactive endophytes warrant intensified exploration and conservation. PLoS ONE 3:e3052. https://doi.org/10.1371/journal.pone.0003052

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. Partida-Martínez LP, Heil M (2011) The microbe-free plant: fact or artifact? Front Plant Sci. https://doi.org/10.3389/fpls.2011.00100

    Article  PubMed  PubMed Central  Google Scholar 

  38. Romero FM, Marina M, Pieckenstain FL (2014) The communities of tomato (Solanum lycopersicum L.) leaf endophytic bacteria, analyzed by 16S-ribosomal RNA gene pyrosequencing. FEMS Microbiol Lett 351:187–194. https://doi.org/10.1111/1574-6968.12377

    Article  CAS  PubMed  Google Scholar 

  39. Samad A, Trognitz F, Compant S et al (2017) Shared and host-specific microbiome diversity and functioning of grapevine and accompanying weed plants: Microbial communities associated with grapevine and vineyard weeds. Environ Microbiol 19:1407–1424. https://doi.org/10.1111/1462-2920.13618

    Article  PubMed  Google Scholar 

  40. Shi Y, Yang H, Zhang T et al (2014) Illumina-based analysis of endophytic bacterial diversity and space-time dynamics in sugar beet on the north slope of Tianshan mountain. Appl Microbiol Biotechnol 98:6375–6385. https://doi.org/10.1007/s00253-014-5720-9

    Article  CAS  PubMed  Google Scholar 

  41. Ishida A, Furuya T (2021) Diversity and characteristics of culturable endophytic bacteria from Passiflora edulis seeds. MicrobiologyOpen. https://doi.org/10.1002/mbo3.1226

    Article  PubMed  PubMed Central  Google Scholar 

  42. Thomas P, Shaik SP (2020) Molecular profiling on surface-disinfected tomato seeds reveals high diversity of cultivation-recalcitrant endophytic bacteria with low shares of spore-forming firmicutes. Microb Ecol 79:910–924. https://doi.org/10.1007/s00248-019-01440-5

    Article  ADS  CAS  PubMed  Google Scholar 

  43. Wang Z, Zhu Y, Li N et al (2021) High-throughput sequencing-based analysis of the composition and diversity of endophytic bacterial community in seeds of saline-alkali tolerant rice. Microbiol Res 250:126794. https://doi.org/10.1016/j.micres.2021.126794

    Article  CAS  PubMed  Google Scholar 

  44. Wassermann B, Cernava T, Müller H et al (2019) Seeds of native alpine plants host unique microbial communities embedded in cross-kingdom networks. Microbiome 7:108. https://doi.org/10.1186/s40168-019-0723-5

    Article  PubMed  PubMed Central  Google Scholar 

  45. Wu T, Li X, Xu J et al (2021) Diversity and functional characteristics of endophytic bacteria from two grass species growing on an oil-contaminated site in the Yellow River Delta. China Sci Total Environ 767:144340. https://doi.org/10.1016/j.scitotenv.2020.144340

    Article  ADS  CAS  PubMed  Google Scholar 

  46. Chelius MK, Triplett EW (2001) The diversity of archaea and bacteria in association with the roots of Zea mays L. Microb Ecol 41:252–263. https://doi.org/10.1007/s002480000087

    Article  ADS  CAS  PubMed  Google Scholar 

  47. Nissinen RM, Männistö MK, van Elsas JD (2012) Endophytic bacterial communities in three arctic plants from low arctic fell tundra are cold-adapted and host-plant specific. FEMS Microbiol Ecol 82:510–522. https://doi.org/10.1111/j.1574-6941.2012.01464.x

    Article  CAS  PubMed  Google Scholar 

  48. Oliveira MNV, Santos TMA, Vale HMM et al (2013) Endophytic microbial diversity in coffee cherries of Coffea arabica from southeastern Brazil. Can J Microbiol 59:221–230. https://doi.org/10.1139/cjm-2012-0674

    Article  CAS  PubMed  Google Scholar 

  49. Sun L, Qiu F, Zhang X et al (2008) Endophytic bacterial diversity in rice (Oryza sativa L.) roots estimated by 16S rDNA sequence analysis. Microb Ecol 55:415–424. https://doi.org/10.1007/s00248-007-9287-1

    Article  ADS  CAS  PubMed  Google Scholar 

  50. Taffner J, Erlacher A, Bragina A et al (2018) What Is the role of Archaea in plants? New insights from the vegetation of alpine bogs. MSphere 3:e00122-e218. https://doi.org/10.1128/mSphere.00122-18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and endosphere of plants: Their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678. https://doi.org/10.1016/j.soilbio.2009.11.024

    Article  CAS  Google Scholar 

  52. Lopez-Echartea E, Strejcek M, Mukherjee S et al (2020) Bacterial succession in oil-contaminated soil under phytoremediation with poplars. Chemosphere 243:125242. https://doi.org/10.1016/j.chemosphere.2019.125242

    Article  CAS  PubMed  Google Scholar 

  53. Compant S, Reiter B, Sessitsch A et al (2005) Endophytic colonization of Vitis vinifera L. by plant growth-promoting bacterium Burkholderia sp. Strain PsJN Appl Environ Microbiol 71:1685–1693. https://doi.org/10.1128/AEM.71.4.1685-1693.2005

    Article  ADS  CAS  PubMed  Google Scholar 

  54. Kembel SW, O’Connor TK, Arnold HK et al (2014) Relationships between phyllosphere bacterial communities and plant functional traits in a neotropical forest. Proc Natl Acad Sci 111:13715–13720. https://doi.org/10.1073/pnas.1216057111

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  55. Redford AJ, Bowers RM, Knight R et al (2010) The ecology of the phyllosphere: geographic and phylogenetic variability in the distribution of bacteria on tree leaves: biogeography of phyllosphere bacterial communities. Environ Microbiol 12:2885–2893. https://doi.org/10.1111/j.1462-2920.2010.02258.x

    Article  PubMed  PubMed Central  Google Scholar 

  56. Lopez-Velasco G, Welbaum GE, Boyer RR et al (2011) Changes in spinach phylloepiphytic bacteria communities following minimal processing and refrigerated storage described using pyrosequencing of 16S rRNA amplicons: Pyrosequencing of spinach microbiome. J Appl Microbiol 110:1203–1214. https://doi.org/10.1111/j.1365-2672.2011.04969.x

    Article  CAS  PubMed  Google Scholar 

  57. Shahzad R, Khan AL, Bilal S et al (2018) What is there in seeds? Vertically transmitted endophytic resources for sustainable improvement in plant growth. Front Plant Sci 9:24. https://doi.org/10.3389/fpls.2018.00024

    Article  PubMed  PubMed Central  Google Scholar 

  58. Frank A, Saldierna Guzmán J, Shay J (2017) Transmission of bacterial endophytes. Microorganisms 5:70. https://doi.org/10.3390/microorganisms5040070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Liu H, Carvalhais LC, Crawford M et al (2017) Inner plant values: diversity, colonization and benefits from endophytic bacteria. Front Microbiol 8:2552. https://doi.org/10.3389/fmicb.2017.02552

    Article  PubMed  PubMed Central  Google Scholar 

  60. Sapers G, Gorny J, Yousef A (2005) Microbiology of fruits and vegetables. CRC Press, Boca Raton

    Book  Google Scholar 

  61. Kaga H, Mano H, Tanaka F et al (2009) Rice seeds as sources of endophytic bacteria. Microbes Environ 24:154–162. https://doi.org/10.1264/jsme2.ME09113

    Article  PubMed  Google Scholar 

  62. Mastretta C, Taghavi S, van der Lelie D et al (2009) Endophytic bacteria from seeds of nicotiana tabacum can reduce cadmium phytotoxicity. Int J Phytoremediation 11:251–267. https://doi.org/10.1080/15226510802432678

    Article  CAS  Google Scholar 

  63. Mitter B, Pfaffenbichler N, Flavell R et al (2017) A new approach to modify plant microbiomes and traits by introducing beneficial bacteria at flowering into progeny seeds. Front Microbiol. https://doi.org/10.3389/fmicb.2017.00011

    Article  PubMed  PubMed Central  Google Scholar 

  64. Amend AS, Cobian GM, Laruson AJ et al (2019) Phytobiomes are compositionally nested from the ground up. PeerJ 7:e6609. https://doi.org/10.7717/peerj.6609

    Article  PubMed  PubMed Central  Google Scholar 

  65. Hiltner L (1904) Über neuere Erfahrungen und Probleme auf dem Gebiete der Bodenbakteriologie unter besonderer Berücksichtigung der Gründüngung und Brache. Arb DLG 98:59–78

    Google Scholar 

  66. Lemanceau P, Blouin M, Muller D, Moënne-Loccoz Y (2017) Let the core microbiota be functional. Trends Plant Sci 22:583–595. https://doi.org/10.1016/j.tplants.2017.04.008

    Article  CAS  PubMed  Google Scholar 

  67. Sasse J, Martinoia E, Northen T (2018) Feed your friends: do plant exudates shape the root microbiome? Trends Plant Sci 23:25–41. https://doi.org/10.1016/j.tplants.2017.09.003

    Article  CAS  PubMed  Google Scholar 

  68. Pfeiffer S, Mitter B, Oswald A et al (2017) Rhizosphere microbiomes of potato cultivated in the High Andes show stable and dynamic core microbiomes with different responses to plant development. FEMS Microbiol Ecol 93:fiw242. https://doi.org/10.1093/femsec/fiw242

    Article  CAS  PubMed  Google Scholar 

  69. Correa-Galeote D, Bedmar EJ, Arone GJ (2018) Maize endophytic bacterial diversity as affected by soil cultivation history. Front Microbiol 9:484. https://doi.org/10.3389/fmicb.2018.00484

    Article  PubMed  PubMed Central  Google Scholar 

  70. Arnold AE, Mejía LC, Kyllo D et al (2003) Fungal endophytes limit pathogen damage in a tropical tree. Proc Natl Acad Sci U S A 100:15649–15654. https://doi.org/10.1073/pnas.2533483100

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ercolani GL (1991) Distribution of epiphytic bacteria on olive leaves and the influence of leaf age and sampling time. Microb Ecol 21:35–48. https://doi.org/10.1007/BF02539143

    Article  ADS  CAS  PubMed  Google Scholar 

  72. Bodenhausen N, Horton MW, Bergelson J (2013) Bacterial communities associated with the leaves and the roots of Arabidopsis thaliana. PLoS ONE 8:e56329. https://doi.org/10.1371/journal.pone.0056329

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  73. Mina D, Pereira JA, Lino-Neto T, Baptista P (2020) Epiphytic and endophytic bacteria on olive tree phyllosphere: exploring tissue and cultivar effect. Microb Ecol 80:145–157. https://doi.org/10.1007/s00248-020-01488-8

    Article  ADS  PubMed  Google Scholar 

  74. Compant S, Cambon MC, Vacher C et al (2021) The plant endosphere world—bacterial life within plants. Environ Microbiol 23:1812–1829. https://doi.org/10.1111/1462-2920.15240

    Article  PubMed  Google Scholar 

  75. Barret M, Guimbaud J-F, Darrasse A, Jacques M-A (2016) Plant microbiota affects seed transmission of phytopathogenic microorganisms: plant microbiota affects seed transmission. Mol Plant Pathol 17:791–795. https://doi.org/10.1111/mpp.12382

    Article  PubMed  PubMed Central  Google Scholar 

  76. Barret M, Briand M, Bonneau S et al (2015) Emergence shapes the structure of the seed microbiota. Appl Environ Microbiol 81:1257–1266. https://doi.org/10.1128/AEM.03722-14

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  77. Rana KL, Kour D, Kaur T et al (2020) Endophytic microbes: biodiversity, plant growth-promoting mechanisms and potential applications for agricultural sustainability. Antonie Van Leeuwenhoek 113:1075–1107. https://doi.org/10.1007/s10482-020-01429-y

    Article  CAS  PubMed  Google Scholar 

  78. Allison SD, Martiny JBH (2008) Resistance, resilience, and redundancy in microbial communities. Proc Natl Acad Sci 105:11512–11519. https://doi.org/10.1073/pnas.0801925105

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  79. Madigan MT (2015) Brock biology of microorganisms, Fourteenth. Pearson, Boston

    Google Scholar 

  80. Gottel NR, Castro HF, Kerley M et al (2011) Distinct microbial communities within the endosphere and rhizosphere of populus deltoides roots across contrasting soil types. Appl Environ Microbiol 77:5934–5944. https://doi.org/10.1128/AEM.05255-11

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  81. Lumactud R, Fulthorpe RR (2018) Endophytic bacterial community structure and function of herbaceous plants from petroleum hydrocarbon contaminated and non-contaminated sites. Front Microbiol 9:1926. https://doi.org/10.3389/fmicb.2018.01926

    Article  PubMed  PubMed Central  Google Scholar 

  82. Lundberg DS, Lebeis SL, Paredes SH et al (2012) Defining the core Arabidopsis thaliana root microbiome. Nature 488:86–90. https://doi.org/10.1038/nature11237

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  83. Rashid S, Charles TC, Glick BR (2012) Isolation and characterization of new plant growth-promoting bacterial endophytes. Appl Soil Ecol 61:217–224. https://doi.org/10.1016/j.apsoil.2011.09.011

    Article  Google Scholar 

  84. Song Z, Ding L, Ma B et al (1999) Studies on the population and dynamic analysis of peanut endophytes. Acta Phytophyl Sin 26:309–314

    Google Scholar 

  85. Oliveira V, Gomes NCM, Almeida A et al (2014) Hydrocarbon contamination and plant species determine the phylogenetic and functional diversity of endophytic degrading bacteria. Mol Ecol 23:1392–1404. https://doi.org/10.1111/mec.12559

    Article  CAS  PubMed  Google Scholar 

  86. Siciliano SD, Fortin N, Mihoc A et al (2001) Selection of specific endophytic bacterial genotypes by plants in response to soil contamination. Appl Environ Microbiol 67:2469–2475. https://doi.org/10.1128/AEM.67.6.2469-2475.2001

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  87. Syranidou E, Thijs S, Avramidou M et al (2018) Responses of the endophytic bacterial communities of Juncus acutus to pollution with metals, emerging organic pollutants and to bioaugmentation with indigenous strains. Front Plant Sci 9:1526. https://doi.org/10.3389/fpls.2018.01526

    Article  PubMed  PubMed Central  Google Scholar 

  88. Vergani L, Mapelli F, Marasco R et al (2017) Bacteria associated to plants naturally selected in a historical PCB polluted soil show potential to sustain natural attenuation. Front Microbiol 8:1385. https://doi.org/10.3389/fmicb.2017.01385

    Article  PubMed  PubMed Central  Google Scholar 

  89. Yarte ME, Gismondi MI, Llorente BE, Larraburu EE (2022) Isolation of endophytic bacteria from the medicinal, forestal and ornamental tree Handroanthus impetiginosus. Environ Technol 43:1129–1139. https://doi.org/10.1080/09593330.2020.1818833

    Article  CAS  PubMed  Google Scholar 

  90. Cherif H, Marasco R, Rolli E et al (2015) Oasis desert farming selects environment-specific date palm root endophytic communities and cultivable bacteria that promote resistance to drought: Oasis palm endophytes promote drought resistance. Environ Microbiol Rep 7:668–678. https://doi.org/10.1111/1758-2229.12304

    Article  CAS  PubMed  Google Scholar 

  91. Ullah A, Nisar M, Ali H et al (2019) Drought tolerance improvement in plants: an endophytic bacterial approach. Appl Microbiol Biotechnol 103:7385–7397. https://doi.org/10.1007/s00253-019-10045-4

    Article  CAS  PubMed  Google Scholar 

  92. Vigani G, Rolli E, Marasco R et al (2019) Root bacterial endophytes confer drought resistance and enhance expression and activity of a vacuolar H + -pumping pyrophosphatase in pepper plants. Environ Microbiol 21:3212–3228. https://doi.org/10.1111/1462-2920.14272

    Article  CAS  Google Scholar 

  93. Ferrando L, FernándezScavino A (2015) Strong shift in the diazotrophic endophytic bacterial community inhabiting rice (Oryza sativa) plants after flooding. FEMS Microbiol Ecol 91:fiv104. https://doi.org/10.1093/femsec/fiv104

    Article  CAS  PubMed  Google Scholar 

  94. Anyango B, Wilson KJ, Beynon JL, Giller KE (1995) Diversity of rhizobia nodulating Phaseolus vulgaris L. in two Kenyan soils with contrasting pHs. Appl Environ Microbiol 61:4016–4021. https://doi.org/10.1128/aem.61.11.4016-4021.1995

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  95. Lafay B, Burdon JJ (1998) Molecular diversity of rhizobia occurring on native shrubby legumes in Southeastern Australia. Appl Environ Microbiol 64:3989–3997. https://doi.org/10.1128/AEM.64.10.3989-3997.1998

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  96. Sheng HM, Gao HS, Xue LG et al (2011) Analysis of the composition and characteristics of culturable endophytic bacteria within subnival plants of the Tianshan Mountains, Northwestern China. Curr Microbiol 62:923–932. https://doi.org/10.1007/s00284-010-9800-5

    Article  CAS  PubMed  Google Scholar 

  97. Chiellini C, Maida I, Emiliani G et al (2014) Endophytic and rhizospheric bacterial communities isolated from the medicinal plants Echinacea purpurea and Echinacea angustifolia. Int Microbiol. https://doi.org/10.2436/20.1501.01.219

    Article  PubMed  Google Scholar 

  98. Ou T, Xu W, Wang F et al (2019) A microbiome study reveals seasonal variation in endophytic bacteria among different mulberry cultivars. Comput Struct Biotechnol J 17:1091–1100. https://doi.org/10.1016/j.csbj.2019.07.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Yang R, Liu P, Ye W (2017) Illumina-based analysis of endophytic bacterial diversity of tree peony (Paeonia Sect. Moutan ) roots and leaves. Braz J Microbiol 48:695–705. https://doi.org/10.1016/j.bjm.2017.02.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Brosi GB, McCulley RL, Bush LP et al (2011) Effects of multiple climate change factors on the tall fescue–fungal endophyte symbiosis: infection frequency and tissue chemistry. New Phytol 189:797–805. https://doi.org/10.1111/j.1469-8137.2010.03532.x

    Article  PubMed  Google Scholar 

  101. Compant S, Van Der Heijden MGA, Sessitsch A (2010) Climate change effects on beneficial plant-microorganism interactions: climate change and beneficial plant-microorganism interactions. FEMS Microbiol Ecol no-no. https://doi.org/10.1111/j.1574-6941.2010.00900.x

    Article  Google Scholar 

  102. Hallmann J, Berg G (2006) Spectrum and population dynamics of bacterial root endophytes. In: Schulz BJE, Boyle CJC, Sieber TN (eds) Microbial root endophytes. Springer, Berlin, pp 15–31

    Chapter  Google Scholar 

  103. Ding T, Melcher U (2016) Influences of plant species, season and location on leaf endophytic bacterial communities of non-cultivated plants. PLoS ONE 11:e0150895. https://doi.org/10.1371/journal.pone.0150895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Yu X, Yang J, Wang E et al (2015) Effects of growth stage and fulvic acid on the diversity and dynamics of endophytic bacterial community in Stevia rebaudiana Bertoni leaves. Front Microbiol 6:1. https://doi.org/10.3389/fmicb.2015.00867

    Article  Google Scholar 

  105. Ambika Manirajan B, Ratering S, Rusch V et al (2016) Bacterial microbiota associated with flower pollen is influenced by pollination type, and shows a high degree of diversity and species-specificity: The bacterial microbiota of flower pollen. Environ Microbiol 18:5161–5174. https://doi.org/10.1111/1462-2920.13524

    Article  PubMed  Google Scholar 

  106. Aulakh MS, Wassmann R, Bueno C et al (2001) Characterization of root exudates at different growth stages of ten rice (Oryza sativa L.) cultivars. Plant Biol 3:139–148. https://doi.org/10.1055/s-2001-12905

    Article  CAS  Google Scholar 

  107. Peters NK, Frost JW, Long SR (1986) A plant flavone, luteolin, induces expression of Rhizobium meliloti nodulation genes. Science 233:977–980. https://doi.org/10.1126/science.3738520

    Article  ADS  CAS  PubMed  Google Scholar 

  108. Sandhiya GS, Sugitha TCK, Balachandar D, Kumar K (2005) Endophytic colonization and in planta nitrogen fixation by a diazotrophic Serratia sp. in rice. Indian J Exp Biol 43:802–807

    CAS  PubMed  Google Scholar 

  109. Lee SY (2000) Bacterial polyhydroxyalkanoates. Biotechnol Bioeng 49:1–14. https://doi.org/10.1002/(SICI)1097-0290(19960105)49:1%3c1::AID-BIT1%3e3.0.CO;2-P

    Article  Google Scholar 

  110. Yashchuk O, Hermida ÉB (2020) Influence of culture conditions on poly-3-hydroxybutyrate production by a newly isolated Bacillus cereus Y23. Clean: Soil, Air, Water 48:1900415. https://doi.org/10.1002/clen.201900415

    Article  CAS  Google Scholar 

  111. Camilios-Neto D, Bonato P, Wassem R et al (2014) Dual RNA-seq transcriptional analysis of wheat roots colonized by Azospirillum brasilense reveals up-regulation of nutrient acquisition and cell cycle genes. BMC Genomics 15:378. https://doi.org/10.1186/1471-2164-15-378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Pankievicz VCS, Camilios-Neto D, Bonato P et al (2016) RNA-seq transcriptional profiling of Herbaspirillum seropedicae colonizing wheat (Triticum aestivum) roots. Plant Mol Biol 90:589–603. https://doi.org/10.1007/s11103-016-0430-6

    Article  CAS  PubMed  Google Scholar 

  113. Meneses CHSG, Rouws LFM, Simões-Araújo JL et al (2011) Exopolysaccharide production is required for biofilm formation and plant colonization by the nitrogen-fixing endophyte Gluconacetobacter diazotrophicus. MPMI 24:1448–1458. https://doi.org/10.1094/MPMI-05-11-0127

    Article  CAS  PubMed  Google Scholar 

  114. Singh M, Kumar A, Singh R, Pandey KD (2017) Endophytic bacteria: a new source of bioactive compounds. 3 Biotech 7:315. https://doi.org/10.1007/s13205-017-0942-z

    Article  PubMed  PubMed Central  Google Scholar 

  115. Henning JA, Weston DJ, Pelletier DA et al (2016) Root bacterial endophytes alter plant phenotype, but not physiology. PeerJ 4:e2606. https://doi.org/10.7717/peerj.2606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Zhang HW, Song YC, Tan RX (2006) Biology and chemistry of endophytes. Nat Prod Rep 23:753. https://doi.org/10.1039/b609472b

    Article  CAS  PubMed  Google Scholar 

  117. Egamberdieva D, Wirth SJ, Shurigin VV et al (2017) Endophytic bacteria improve plant growth, symbiotic performance of chickpea (Cicer arietinum L.) and induce suppression of root rot caused by fusarium solani under salt stress. Front Microbiol 8:1887. https://doi.org/10.3389/fmicb.2017.01887

    Article  PubMed  PubMed Central  Google Scholar 

  118. Khalaf EM, Raizada MN (2018) Bacterial seed endophytes of domesticated cucurbits antagonize fungal and oomycete pathogens including powdery mildew. Front Microbiol 9:42. https://doi.org/10.3389/fmicb.2018.00042

    Article  PubMed  PubMed Central  Google Scholar 

  119. Zhao L, Xu Y, Lai X (2018) Antagonistic endophytic bacteria associated with nodules of soybean (Glycine max L.) and plant growth-promoting properties. Braz J Microbiol 49:269–278. https://doi.org/10.1016/j.bjm.2017.06.007

    Article  CAS  PubMed  Google Scholar 

  120. Tian B-Y, Cao Y, Zhang K-Q (2015) Metagenomic insights into communities, functions of endophytes and their associates with infection by root-knot nematode, Meloidogyne incognita, in tomato roots. Sci Rep 5:17087. https://doi.org/10.1038/srep17087

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  121. Ormeño-Orrillo E, Hungria M, Martinez-Romero E (2013) Dinitrogen-fixing prokaryotes. In: Rosenberg E, DeLong EF, Lory S et al (eds) The prokaryotes. Springer, Berlin, pp 427–451

    Chapter  Google Scholar 

  122. Alam M, Roy C, Pyne P et al (2012) Whole-genome shotgun sequence of the sulfur-oxidizing chemoautotroph Pseudaminobacter salicylatoxidans KCT001. J Bacteriol 194:4743–4744. https://doi.org/10.1128/JB.00944-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Mustaq S, Moin A, Pandit B et al (2023) Phyllobacteriaceae: a family of ecologically and metabolically diverse bacteria with the potential for different applications. Folia Microbiol (Praha). https://doi.org/10.1007/s12223-023-01107-2

    Article  PubMed  Google Scholar 

  124. Gutiérrez-Zamora ML, Martínez-Romero E (2001) Natural endophytic association between Rhizobium etli and maize (Zea mays L.). J Biotechnol 91:117–126. https://doi.org/10.1016/s0168-1656(01)00332-7

    Article  PubMed  Google Scholar 

  125. Ramachandran VK, East AK, Karunakaran R et al (2011) Adaptation of Rhizobium leguminosarum to pea, alfalfa and sugar beet rhizospheres investigated by comparative transcriptomics. Genome Biol 12:R106. https://doi.org/10.1186/gb-2011-12-10-r106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Bhattacharjee RB, Singh A, Mukhopadhyay SN (2008) Use of nitrogen-fixing bacteria as biofertiliser for non-legumes: prospects and challenges. Appl Microbiol Biotechnol 80:199–209. https://doi.org/10.1007/s00253-008-1567-2

    Article  CAS  PubMed  Google Scholar 

  127. Ji SH, Gururani MA, Chun S-C (2014) Isolation and characterization of plant growth promoting endophytic diazotrophic bacteria from Korean rice cultivars. Microbiol Res 169:83–98. https://doi.org/10.1016/j.micres.2013.06.003

    Article  CAS  PubMed  Google Scholar 

  128. Nag P, Shriti S, Das S (2020) Microbiological strategies for enhancing biological nitrogen fixation in nonlegumes. J Appl Microbiol 129:186–198. https://doi.org/10.1111/jam.14557

    Article  CAS  PubMed  Google Scholar 

  129. JoséI B, Caruso L, Baldani VLD et al (1997) Recent advances in BNF with non-legume plants. Soil Biol Biochem 29:911–922. https://doi.org/10.1016/S0038-0717(96)00218-0

    Article  Google Scholar 

  130. Carrell AA, Frank AC (2014) Pinus flexilis and Piceae engelmannii share a simple and consistent needle endophyte microbiota with a potential role in nitrogen fixation. Front Microbiol. https://doi.org/10.3389/fmicb.2014.00333

    Article  PubMed  PubMed Central  Google Scholar 

  131. Padda KP, Puri A, Chanway C (2019) Endophytic nitrogen fixation—a possible ‘hidden’ source of nitrogen for lodgepole pine trees growing at unreclaimed gravel mining sites. FEMS Microbiol Ecol 95:fiz172. https://doi.org/10.1093/femsec/fiz172

    Article  CAS  PubMed  Google Scholar 

  132. Setten L, Soto G, Mozzicafreddo M et al (2013) Engineering pseudomonas protegens Pf-5 for nitrogen fixation and its application to improve plant growth under nitrogen-deficient conditions. PLoS ONE 8:e63666. https://doi.org/10.1371/journal.pone.0063666

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  133. Fox AR, Soto G, Valverde C et al (2016) Major cereal crops benefit from biological nitrogen fixation when inoculated with the nitrogen-fixing bacterium Pseudomonas protegens Pf-5 X940: robust biological nitrogen fixation in major cereal crops. Environ Microbiol 18:3522–3534. https://doi.org/10.1111/1462-2920.13376

    Article  CAS  PubMed  Google Scholar 

  134. Ryu M-H, Zhang J, Toth T et al (2020) Control of nitrogen fixation in bacteria that associate with cereals. Nat Microbiol 5:314–330. https://doi.org/10.1038/s41564-019-0631-2

    Article  CAS  PubMed  Google Scholar 

  135. Chen J, Zhao G, Wei Y et al (2021) Isolation and screening of multifunctional phosphate solubilizing bacteria and its growth-promoting effect on Chinese fir seedlings. Sci Rep 11:9081. https://doi.org/10.1038/s41598-021-88635-4

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  136. Lucero CT, Lorda GS, Anzuay MS et al (2021) Peanut endophytic phosphate solubilizing bacteria increase growth and p content of soybean and maize plants. Curr Microbiol 78:1961–1972. https://doi.org/10.1007/s00284-021-02469-x

    Article  CAS  PubMed  Google Scholar 

  137. Mei C, Chretien RL, Amaradasa BS et al (2021) Characterization of phosphate solubilizing bacterial endophytes and plant growth promotion in vitro and in greenhouse. Microorganisms 9:1935. https://doi.org/10.3390/microorganisms9091935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Varga T, Hixson KK, Ahkami AH et al (2020) Endophyte-promoted phosphorus solubilization in populus. Front Plant Sci 11:567918. https://doi.org/10.3389/fpls.2020.567918

    Article  PubMed  PubMed Central  Google Scholar 

  139. Achbergerová L, Nahálka J (2011) Polyphosphate—an ancient energy source and active metabolic regulator. Microb Cell Factories 10:63. https://doi.org/10.1186/1475-2859-10-63

    Article  CAS  Google Scholar 

  140. Kulaev I, Kulakovskaya T (2000) Polyphosphate and phosphate pump. Annu Rev Microbiol 54:709–734. https://doi.org/10.1146/annurev.micro.54.1.709

    Article  CAS  PubMed  Google Scholar 

  141. Loaces I, Ferrando L, Scavino AF (2011) Dynamics, diversity and function of endophytic siderophore-producing bacteria in rice. Microb Ecol 61:606–618. https://doi.org/10.1007/s00248-010-9780-9

    Article  ADS  PubMed  Google Scholar 

  142. Rosconi F, Davyt D, Martínez V et al (2013) Identification and structural characterization of serobactins, a suite of lipopeptide siderophores produced by the grass endophyte Herbaspirillum seropedicae: Siderophores of Herbaspirillum seropedicae. Environ Microbiol 15:916–927. https://doi.org/10.1111/1462-2920.12075

    Article  CAS  PubMed  Google Scholar 

  143. Marques A, Pires C, Moreira H et al (2010) Assessment of the plant growth promotion abilities of six bacterial isolates using Zea mays as indicator plant. Soil Biol Biochem 42:1229–1235

    Article  CAS  Google Scholar 

  144. Radzki W, Gutierrez Mañero FJ, Algar E et al (2013) Bacterial siderophores efficiently provide iron to iron-starved tomato plants in hydroponics culture. Antonie Van Leeuwenhoek 104:321–330. https://doi.org/10.1007/s10482-013-9954-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Ahmad F, Ahmad I, Khan MS (2008) Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res 163:173–181. https://doi.org/10.1016/j.micres.2006.04.001

    Article  CAS  PubMed  Google Scholar 

  146. Araújo W, Lacava P, Andreote F, Azevedo J (2008) Interaction between endophytes and plant host: biotechnological aspects. In: Barka EA, Clement C (eds) Plant-microbe interactions. Research Signpost, Kerala, pp 95–115

    Google Scholar 

  147. Calvente V, de Orellano ME, Sansone G et al (2001) Effect of nitrogen source and pH on siderophore production by Rhodotorula strains and their application to biocontrol of phytopathogenic moulds. J Ind Microbiol Biotechnol 26:226–229. https://doi.org/10.1038/sj.jim.7000117

    Article  CAS  PubMed  Google Scholar 

  148. Long HH, Schmidt DD, Baldwin IT (2008) Native bacterial endophytes promote host growth in a species-specific manner; phytohormone manipulations do not result in common growth responses. PLoS ONE 3:e2702. https://doi.org/10.1371/journal.pone.0002702

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  149. Shi Y, Lou K, Li C (2009) Promotion of plant growth by phytohormone-producing endophytic microbes of sugar beet. Biol Fertil Soils 45:645–653. https://doi.org/10.1007/s00374-009-0376-9

    Article  CAS  Google Scholar 

  150. Gamalero E, Glick BR (2015) Bacterial modulation of plant ethylene levels. Plant Physiol 169:13–22. https://doi.org/10.1104/pp.15.00284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Glick BR (2015) Beneficial plant-bacterial interactions, 1st edn. Springer, Cham

    Book  Google Scholar 

  152. Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica 2012:1–15. https://doi.org/10.6064/2012/963401

    Article  Google Scholar 

  153. Gravel V, Antoun H, Tweddell RJ (2007) Growth stimulation and fruit yield improvement of greenhouse tomato plants by inoculation with Pseudomonas putida or Trichoderma atroviride: possible role of indole acetic acid (IAA). Soil Biol Biochem 39:1968–1977. https://doi.org/10.1016/j.soilbio.2007.02.015

    Article  CAS  Google Scholar 

  154. Chen C, Xin K, Li M et al (2016) Paenibacillus sinopodophylli sp. nov., a siderophore-producing endophytic bacterium isolated from roots of Sinopodophyllum hexandrum (Royle) Ying. Int J Syst Evol Microbiol 66:4993–4999. https://doi.org/10.1099/ijsem.0.001458

    Article  CAS  PubMed  Google Scholar 

  155. Fouda A, Eid AM, Elsaied A et al (2021) Plant growth-promoting endophytic bacterial community inhabiting the leaves of Pulicaria incisa (Lam.) DC inherent to arid regions. Plants 10:76. https://doi.org/10.3390/plants10010076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Wang S, Ji B, Su X et al (2020) Isolation of endophytic bacteria from Rehmannia glutinosa Libosch and their potential to promote plant growth. J Gen Appl Microbiol 66:279–288. https://doi.org/10.2323/jgam.2019.12.001

    Article  CAS  PubMed  Google Scholar 

  157. Zhu Y (2019) Isolation and identification of Ammodendron bifolium endophytic bacteria and the action mechanism of selected isolates-induced seed germination and their effects on host osmotic-stress tolerance. Arch Microbiol 201:431–442. https://doi.org/10.1007/s00203-018-1582-3

    Article  CAS  PubMed  Google Scholar 

  158. Navarro L, Dunoyer P, Jay F et al (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312:436–439. https://doi.org/10.1126/science.1126088

    Article  ADS  CAS  PubMed  Google Scholar 

  159. Suzuki S, He Y, Oyaizu H (2003) Indole-3-acetic acid production in Pseudomonas fluorescens HP72 and its association with suppression of creeping bentgrass brown patch. Curr Microbiol 47:138–143. https://doi.org/10.1007/s00284-002-3968-2

    Article  CAS  PubMed  Google Scholar 

  160. Malik DK, Sindhu SS (2011) Production of indole acetic acid by Pseudomonas sp.: effect of coinoculation with Mesorhizobium sp. Cicer on nodulation and plant growth of chickpea (Cicer arietinum). Physiol Mol Biol Plants Int J Funct Plant Biol 17:25–32. https://doi.org/10.1007/s12298-010-0041-7

    Article  CAS  Google Scholar 

  161. Leveau JHJ, Lindow SE (2005) Utilization of the plant hormone indole-3-acetic acid for growth by Pseudomonas putida strain 1290. Appl Environ Microbiol 71:2365–2371. https://doi.org/10.1128/AEM.71.5.2365-2371.2005

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  162. Torres D, Mongiardini E, Donadío F et al (2021) Molecular and physiological analysis of indole-3-acetic acid degradation in Bradyrhizobium japonicum E109. Res Microbiol 172:103814. https://doi.org/10.1016/j.resmic.2021.103814

    Article  CAS  PubMed  Google Scholar 

  163. Sun L, Wang X, Li Y (2016) Increased plant growth and copper uptake of host and non-host plants by metal-resistant and plant growth-promoting endophytic bacteria. Int J Phytoremediation 18:494–501. https://doi.org/10.1080/15226514.2015.1115962

    Article  CAS  PubMed  Google Scholar 

  164. Iniguez AL, Dong Y, Carter HD et al (2005) Regulation of enteric endophytic bacterial colonization by plant defenses. MPMI 18:169–178. https://doi.org/10.1094/MPMI-18-0169

    Article  CAS  PubMed  Google Scholar 

  165. Choi J, Roy Choudhury A, Walitang DI et al (2022) ACC deaminase-producing Brevibacterium linens RS16 enhances heat-stress tolerance of rice (Oryza sativa L.). Physiol Plant 174:e13584. https://doi.org/10.1111/ppl.13584

    Article  CAS  PubMed  Google Scholar 

  166. Maheshwari R, Bhutani N, Suneja P (2020) Isolation and characterization of ACC deaminase producing endophytic Bacillus mojavensis PRN2 from Pisum sativum. Iran J Biotechnol 18:e2308. https://doi.org/10.30498/IJB.2020.137279.2308

    Article  PubMed  PubMed Central  Google Scholar 

  167. Nikolic B, Schwab H, Sessitsch A (2011) Metagenomic analysis of the 1-aminocyclopropane-1-carboxylate deaminase gene (acdS) operon of an uncultured bacterial endophyte colonizing Solanum tuberosum L. Arch Microbiol 193:665–676. https://doi.org/10.1007/s00203-011-0703-z

    Article  CAS  PubMed  Google Scholar 

  168. Zhang Y-F, He L-Y, Chen Z-J et al (2011) Characterization of ACC deaminase-producing endophytic bacteria isolated from copper-tolerant plants and their potential in promoting the growth and copper accumulation of Brassica napus. Chemosphere 83:57–62. https://doi.org/10.1016/j.chemosphere.2011.01.041

    Article  ADS  CAS  PubMed  Google Scholar 

  169. Sun Y, Cheng Z, Glick BR (2009) The presence of a 1-aminocyclopropane-1-carboxylate (ACC) deaminase deletion mutation alters the physiology of the endophytic plant growth-promoting bacterium Burkholderia phytofirmans PsJN. FEMS Microbiol Lett 296:131–136. https://doi.org/10.1111/j.1574-6968.2009.01625.x

    Article  CAS  PubMed  Google Scholar 

  170. Roy Choudhury A, Choi J, Walitang DI et al (2021) ACC deaminase and indole acetic acid producing endophytic bacterial co-inoculation improves physiological traits of red pepper (Capsicum annum L.) under salt stress. J Plant Physiol 267:153544. https://doi.org/10.1016/j.jplph.2021.153544

    Article  CAS  PubMed  Google Scholar 

  171. Bottini R, Cassán F, Piccoli P (2004) Gibberellin production by bacteria and its involvement in plant growth promotion and yield increase. Appl Microbiol Biotechnol 65:497–503. https://doi.org/10.1007/s00253-004-1696-1

    Article  CAS  PubMed  Google Scholar 

  172. Khan AL, Waqas M, Kang S-M et al (2014) Bacterial endophyte Sphingomonas sp. LK11 produces gibberellins and IAA and promotes tomato plant growth. J Microbiol Seoul Korea 52:689–695. https://doi.org/10.1007/s12275-014-4002-7

    Article  CAS  Google Scholar 

  173. Shahzad R, Khan AL, Waqas M et al (2019) Metabolic and proteomic alteration in phytohormone-producing endophytic Bacillus amyloliquefaciens RWL-1 during methanol utilization. Metabolomics Off J Metabolomic Soc 15:16. https://doi.org/10.1007/s11306-018-1467-0

    Article  CAS  Google Scholar 

  174. Shahzad R, Waqas M, Khan AL et al (2016) Seed-borne endophytic Bacillus amyloliquefaciens RWL-1 produces gibberellins and regulates endogenous phytohormones of Oryza sativa. Plant Physiol Biochem PPB 106:236–243. https://doi.org/10.1016/j.plaphy.2016.05.006

    Article  CAS  PubMed  Google Scholar 

  175. de Lamo FJ, Takken FLW (2020) Biocontrol by fusarium oxysporum using endophyte-mediated resistance. Front Plant Sci 11:37. https://doi.org/10.3389/fpls.2020.00037

    Article  PubMed  PubMed Central  Google Scholar 

  176. Lodewyckx C, Vangronsveld J, Porteous F et al (2002) Endophytic bacteria and their potential applications. Crit Rev Plant Sci 21:583–606. https://doi.org/10.1080/0735-260291044377

    Article  Google Scholar 

  177. Zarei M, Aminzadeh S, Zolgharnein H et al (2011) Characterization of a chitinase with antifungal activity from a native Serratia marcescens B4A. Braz J Microbiol Publ Braz Soc Microbiol 42:1017–1029. https://doi.org/10.1590/S1517-838220110003000022

    Article  CAS  Google Scholar 

  178. Zhang D, Spadaro D, Valente S et al (2012) Cloning, characterization, expression and antifungal activity of an alkaline serine protease of Aureobasidium pullulans PL5 involved in the biological control of postharvest pathogens. Int J Food Microbiol 153:453–464. https://doi.org/10.1016/j.ijfoodmicro.2011.12.016

    Article  CAS  PubMed  Google Scholar 

  179. Bashir S, Iqbal A, Hasnain S, White JF (2021) Screening of sunflower associated bacteria as biocontrol agents for plant growth promotion. Arch Microbiol 203:4901–4912. https://doi.org/10.1007/s00203-021-02463-8

    Article  CAS  PubMed  Google Scholar 

  180. Cui L, Yang C, Wang Y et al (2022) Potential of an endophytic bacteria Bacillus amyloliquefaciens 3–5 as biocontrol agent against potato scab. Microb Pathog 163:105382. https://doi.org/10.1016/j.micpath.2021.105382

    Article  CAS  PubMed  Google Scholar 

  181. Pan D, Mionetto A, Tiscornia S, Bettucci L (2015) Endophytic bacteria from wheat grain as biocontrol agents of Fusarium graminearum and deoxynivalenol production in wheat. Mycotoxin Res 31:137–143. https://doi.org/10.1007/s12550-015-0224-8

    Article  CAS  PubMed  Google Scholar 

  182. Pei D, Zhang Q, Zhu X, Han S (2021) Endophytic Bacillus subtilis P10 from Prunus cerasifera as a biocontrol agent against tomato Verticillium wilt. Braz J Biol Rev Brasleira Biol 83:e244261. https://doi.org/10.1590/1519-6984.244261

    Article  CAS  Google Scholar 

  183. Wang S-S, Liu J-M, Sun J et al (2019) Diversity of culture-independent bacteria and antimicrobial activity of culturable endophytic bacteria isolated from different Dendrobium stems. Sci Rep 9:10389. https://doi.org/10.1038/s41598-019-46863-9

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  184. Xu W, Wang F, Zhang M et al (2019) Diversity of cultivable endophytic bacteria in mulberry and their potential for antimicrobial and plant growth-promoting activities. Microbiol Res 229:126328. https://doi.org/10.1016/j.micres.2019.126328

    Article  CAS  PubMed  Google Scholar 

  185. Abo-Elyousr KAM, Abdel-Rahim IR, Almasoudi NM, Alghamdi SA (2021) Native endophytic pseudomonas putida as a biocontrol agent against common bean rust caused by Uromyces appendiculatus. J Fungi Basel Switz 7:745. https://doi.org/10.3390/jof7090745

    Article  CAS  Google Scholar 

  186. Basumatary B, Das D, Choudhury BN et al (2021) Isolation and characterization of endophytic bacteria from tomato foliage and their in vitro efficacy against root-knot nematodes. J Nematol 53:e2021–e2104. https://doi.org/10.21307/jofnem-2021-104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Hu H, Gao Y, Li X et al (2020) Identification and nematicidal characterization of proteases secreted by endophytic bacteria Bacillus cereus BCM2. Phytopathology 110:336–344. https://doi.org/10.1094/PHYTO-05-19-0164-R

    Article  CAS  PubMed  Google Scholar 

  188. Niu H, Sun Y, Zhang Z et al (2022) The endophytic bacterial entomopathogen Serratia marcescens promotes plant growth and improves resistance against Nilaparvata lugens in rice. Microbiol Res 256:126956. https://doi.org/10.1016/j.micres.2021.126956

    Article  CAS  PubMed  Google Scholar 

  189. Downing KJ, Leslie G, Thomson JA (2000) Biocontrol of the sugarcane borer Eldana saccharina by expression of the Bacillus thuringiensis cry1Ac7 and Serratia marcescens chiA genes in sugarcane-associated bacteria. Appl Environ Microbiol 66:2804–2810. https://doi.org/10.1128/AEM.66.7.2804-2810.2000

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  190. Quecine MC, Araújo WL, Tsui S et al (2014) Control of Diatraea saccharalis by the endophytic Pantoea agglomerans 33.1 expressing cry1Ac7. Arch Microbiol 196:227–234. https://doi.org/10.1007/s00203-014-0962-6

    Article  CAS  PubMed  Google Scholar 

  191. Alvin A, Miller KI, Neilan BA (2014) Exploring the potential of endophytes from medicinal plants as sources of antimycobacterial compounds. Microbiol Res 169:483–495. https://doi.org/10.1016/j.micres.2013.12.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Constantin ME, de Lamo FJ, Vlieger BV et al (2019) Endophyte-mediated resistance in tomato to fusarium oxysporum is independent of ET, JA, and SA. Front Plant Sci 10:979. https://doi.org/10.3389/fpls.2019.00979

    Article  PubMed  PubMed Central  Google Scholar 

  193. Pieterse CMJ, Van der Does D, Zamioudis C et al (2012) Hormonal modulation of plant immunity. Annu Rev Cell Dev Biol 28:489–521. https://doi.org/10.1146/annurev-cellbio-092910-154055

    Article  CAS  PubMed  Google Scholar 

  194. Romera FJ, García MJ, Lucena C et al (2019) Induced systemic resistance (ISR) and Fe deficiency responses in dicot plants. Front Plant Sci 10:287. https://doi.org/10.3389/fpls.2019.00287

    Article  PubMed  PubMed Central  Google Scholar 

  195. Rashid MH-O, Khan A, Hossain MT, Chung YR (2017) Induction of systemic resistance against aphids by endophytic Bacillus velezensis YC7010 via expressing PHYTOALEXIN DEFICIENT4 in arabidopsis. Front Plant Sci 8:211. https://doi.org/10.3389/fpls.2017.00211

    Article  PubMed  PubMed Central  Google Scholar 

  196. Ma Y, Rajkumar M, Zhang C, Freitas H (2016) Beneficial role of bacterial endophytes in heavy metal phytoremediation. J Environ Manag 174:14–25. https://doi.org/10.1016/j.jenvman.2016.02.047

    Article  CAS  Google Scholar 

  197. Daryanto S, Wang L, Jacinthe P-A (2016) Global synthesis of drought effects on maize and wheat production. PLoS ONE 11:e0156362. https://doi.org/10.1371/journal.pone.0156362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Yu L-H, Wu S-J, Peng Y-S et al (2016) Arabidopsis EDT1/HDG11 improves drought and salt tolerance in cotton and poplar and increases cotton yield in the field. Plant Biotechnol J 14:72–84. https://doi.org/10.1111/pbi.12358

    Article  CAS  PubMed  Google Scholar 

  199. Asaf S, Khan AL, Khan MA et al (2017) Osmoprotective functions conferred to soybean plants via inoculation with Sphingomonas sp. LK11 and exogenous trehalose. Microbiol Res 205:135–145. https://doi.org/10.1016/j.micres.2017.08.009

    Article  CAS  PubMed  Google Scholar 

  200. Shahzad R, Khan AL, Bilal S et al (2017) Inoculation of abscisic acid-producing endophytic bacteria enhances salinity stress tolerance in Oryza sativa. Environ Exp Bot 136:68–77. https://doi.org/10.1016/j.envexpbot.2017.01.010

    Article  CAS  Google Scholar 

  201. Cardoso P, Alves A, Silveira P et al (2018) Bacteria from nodules of wild legume species: phylogenetic diversity, plant growth promotion abilities and osmotolerance. Sci Total Environ 645:1094–1102. https://doi.org/10.1016/j.scitotenv.2018.06.399

    Article  ADS  CAS  PubMed  Google Scholar 

  202. Vysotskaya LB, Korobova AV, Veselov SY et al (2009) ABA mediation of shoot cytokinin oxidase activity: assessing its impacts on cytokinin status and biomass allocation of nutrient-deprived durum wheat. Funct Plant Biol FPB 36:66–72. https://doi.org/10.1071/FP08187

    Article  CAS  PubMed  Google Scholar 

  203. Guajardo E, Correa JA, Contreras-Porcia L (2016) Role of abscisic acid (ABA) in activating antioxidant tolerance responses to desiccation stress in intertidal seaweed species. Planta 243:767–781. https://doi.org/10.1007/s00425-015-2438-6

    Article  CAS  PubMed  Google Scholar 

  204. Forchetti G, Masciarelli O, Alemano S et al (2007) Endophytic bacteria in sunflower (Helianthus annuus L.): isolation, characterization, and production of jasmonates and abscisic acid in culture medium. Appl Microbiol Biotechnol 76:1145–1152. https://doi.org/10.1007/s00253-007-1077-7

    Article  CAS  PubMed  Google Scholar 

  205. Cohen AC, Travaglia CN, Bottini R, Piccoli PN (2009) Participation of abscisic acid and gibberellins produced by endophytic Azospirillum in the alleviation of drought effects in maize. Botany 87:455–462. https://doi.org/10.1139/B09-023

    Article  CAS  Google Scholar 

  206. Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169:30–39. https://doi.org/10.1016/j.micres.2013.09.009

    Article  CAS  PubMed  Google Scholar 

  207. Pandit B, Moin A, Mondal A et al (2023) Characterization of a biofilm-forming, amylase-producing, and heavy-metal-bioremediating strain Micrococcus sp. BirBP01 isolated from oligotrophic subsurface lateritic soil. Arch Microbiol 205:351. https://doi.org/10.1007/s00203-023-03690-x

    Article  CAS  PubMed  Google Scholar 

  208. Płociniczak T, Chodór M, Pacwa-Płociniczak M, Piotrowska-Seget Z (2019) Metal-tolerant endophytic bacteria associated with Silene vulgaris support the Cd and Zn phytoextraction in non-host plants. Chemosphere 219:250–260. https://doi.org/10.1016/j.chemosphere.2018.12.018

    Article  ADS  CAS  PubMed  Google Scholar 

  209. Barac T, Taghavi S, Borremans B et al (2004) Engineered endophytic bacteria improve phytoremediation of water-soluble, volatile, organic pollutants. Nat Biotechnol 22:583–588. https://doi.org/10.1038/nbt960

    Article  CAS  PubMed  Google Scholar 

  210. Liu L-H, Yuan T, Zhang J-Y et al (2022) Diversity of endophytic bacteria in wild rice (Oryza meridionalis) and potential for promoting plant growth and degrading phthalates. Sci Total Environ 806:150310. https://doi.org/10.1016/j.scitotenv.2021.150310

    Article  ADS  CAS  PubMed  Google Scholar 

  211. Akinsanya MA, Goh JK, Lim SP, Ting ASY (2015) Metagenomics study of endophytic bacteria in Aloe vera using next-generation technology. Genomics Data 6:159–163. https://doi.org/10.1016/j.gdata.2015.09.004

    Article  PubMed  PubMed Central  Google Scholar 

  212. Franzosa EA, Hsu T, Sirota-Madi A et al (2015) Sequencing and beyond: integrating molecular “omics” for microbial community profiling. Nat Rev Microbiol 13:360–372. https://doi.org/10.1038/nrmicro3451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Dudeja SS, Suneja-Madan P, Paul M et al (2021) Bacterial endophytes: molecular interactions with their hosts. J Basic Microbiol 61:475–505. https://doi.org/10.1002/jobm.202000657

    Article  CAS  PubMed  Google Scholar 

  214. Nerva L, Garcia JF, Favaretto F et al (2022) The hidden world within plants: metatranscriptomics unveils the complexity of wood microbiomes. J Exp Bot 73:2682–2697. https://doi.org/10.1093/jxb/erac032

    Article  CAS  PubMed  Google Scholar 

  215. Utturkar SM, Cude WN, Robeson MS et al (2016) Enrichment of root endophytic bacteria from populus deltoides and single-cell-genomics analysis. Appl Environ Microbiol 82:5698–5708. https://doi.org/10.1128/AEM.01285-16

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  216. Deng H, Gao R, Liao X, Cai Y (2017) CRISPR system in filamentous fungi: current achievements and future directions. Gene 627:212–221. https://doi.org/10.1016/j.gene.2017.06.019

    Article  CAS  PubMed  Google Scholar 

  217. Li L, Wei K, Liu X et al (2019) aMSGE: advanced multiplex site-specific genome engineering with orthogonal modular recombinases in actinomycetes. Metab Eng 52:153–167. https://doi.org/10.1016/j.ymben.2018.12.001

    Article  CAS  PubMed  Google Scholar 

  218. Che S, Men Y (2019) Synthetic microbial consortia for biosynthesis and biodegradation: promises and challenges. J Ind Microbiol Biotechnol 46:1343–1358. https://doi.org/10.1007/s10295-019-02211-4

    Article  CAS  PubMed  Google Scholar 

  219. Qian X, Chen L, Sui Y et al (2020) Biotechnological potential and applications of microbial consortia. Biotechnol Adv 40:107500. https://doi.org/10.1016/j.biotechadv.2019.107500

    Article  PubMed  Google Scholar 

  220. Compant S, Samad A, Faist H, Sessitsch A (2019) A review on the plant microbiome: ecology, functions, and emerging trends in microbial application. J Adv Res 19:29–37. https://doi.org/10.1016/j.jare.2019.03.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Pereira SIA, Monteiro C, Vega AL, Castro PML (2016) Endophytic culturable bacteria colonizing Lavandula dentata L. plants: isolation, characterization and evaluation of their plant growth-promoting activities. Ecol Eng 87:91–97. https://doi.org/10.1016/j.ecoleng.2015.11.033

    Article  Google Scholar 

  222. Gowtham HG, Murali M, Singh SB et al (2018) Plant growth promoting rhizobacteria- Bacillus amyloliquefaciens improves plant growth and induces resistance in chilli against anthracnose disease. Biol Control 126:209–217. https://doi.org/10.1016/j.biocontrol.2018.05.022

    Article  CAS  Google Scholar 

  223. Borah A, Thakur D (2020) Phylogenetic and functional characterization of culturable endophytic actinobacteria associated with Camellia spp. for growth promotion in commercial tea cultivars. Front Microbiol 11:318. https://doi.org/10.3389/fmicb.2020.00318

    Article  PubMed  PubMed Central  Google Scholar 

  224. Kumawat KC, Sharma P, Sirari A et al (2019) Synergism of Pseudomonas aeruginosa (LSE-2) nodule endophyte with Bradyrhizobium sp. (LSBR-3) for improving plant growth, nutrient acquisition and soil health in soybean. World J Microbiol Biotechnol 35:47. https://doi.org/10.1007/s11274-019-2622-0

    Article  CAS  PubMed  Google Scholar 

  225. Rana KL, Kour D, Kaur T et al (2020) Endophytic microbes from diverse wheat genotypes and their potential biotechnological applications in plant growth promotion and nutrient uptake. Proc Natl Acad Sci India Sect B Biol Sci 90:969–979. https://doi.org/10.1007/s40011-020-01168-0

    Article  CAS  Google Scholar 

  226. Devi KA, Pandey P, Sharma GD (2016) Plant growth-promoting endophyte serratia marcescens AL2-16 enhances the growth of Achyranthes aspera L., a medicinal plant. HAYATI J Biosci 23:173–180. https://doi.org/10.1016/j.hjb.2016.12.006

    Article  Google Scholar 

  227. Li J, Zheng B, Hu R et al (2019) Pseudomonas species isolated from tobacco seed promote root growth and reduce lead contents in Nicotiana tobacum K326. Can J Microbiol 65:214–223. https://doi.org/10.1139/cjm-2018-0434

    Article  CAS  PubMed  Google Scholar 

  228. Haidar B, Ferdous M, Fatema B et al (2018) Population diversity of bacterial endophytes from jute (Corchorus olitorius) and evaluation of their potential role as bioinoculants. Microbiol Res 208:43–53. https://doi.org/10.1016/j.micres.2018.01.008

    Article  PubMed  Google Scholar 

  229. Gonzalez-Escobedo R, Briones-Roblero CI, Pineda-Mendoza RM et al (2018) Bacteriome from Pinus arizonica and P. durangensis: diversity, comparison of assemblages, and overlapping degree with the gut bacterial community of a bark beetle that kills pines. Front Microbiol 9:77. https://doi.org/10.3389/fmicb.2018.00077

    Article  PubMed  PubMed Central  Google Scholar 

  230. Woźniak M, Gałązka A, Tyśkiewicz R, Jaroszuk-Ściseł J (2019) Endophytic bacteria potentially promote plant growth by synthesizing different metabolites and their phenotypic/physiological profiles in the biolog GEN III MicroPlateTM test. Int J Mol Sci 20:5283. https://doi.org/10.3390/ijms20215283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Fang K, Bao Z-S-N, Chen L et al (2019) Growth-promoting characteristics of potential nitrogen-fixing bacteria in the root of an invasive plant Ageratina adenophora. PeerJ 7:e7099. https://doi.org/10.7717/peerj.7099

    Article  PubMed  PubMed Central  Google Scholar 

  232. Qin S, Feng W-W, Zhang Y-J et al (2018) Diversity of bacterial microbiota of coastal halophyte limonium sinense and amelioration of salinity stress damage by symbiotic plant growth-promoting actinobacterium glutamicibacter halophytocola KLBMP 5180. Appl Environ Microbiol 84:e01533-e1618. https://doi.org/10.1128/AEM.01533-18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Zhu X, Jin L, Sun K et al (2016) Potential of endophytic bacterium Paenibacillus sp PHE-3 Isolated from Plantago asiatica L. for reduction of PAH contamination in plant tissues. Int J Environ Res Public Health 13:633. https://doi.org/10.3390/ijerph13070633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Khaksar G, Siswanto D, Treesubsuntorn C, Thiravetyan P (2016) Euphorbia milii-endophytic bacteria interactions affect hormonal levels of the native host differently under various airborne pollutants. MPMI 29:663–673. https://doi.org/10.1094/MPMI-06-16-0117-R

    Article  CAS  PubMed  Google Scholar 

  235. Chen C, Xin K, Liu H et al (2017) Pantoea alhagi, a novel endophytic bacterium with ability to improve growth and drought tolerance in wheat. Sci Rep 7:41564. https://doi.org/10.1038/srep41564

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  236. Jayakumar A, Padmakumar P, Nair IC, Radhakrishnan EK (2020) Drought tolerant bacterial endophytes with potential plant probiotic effects from Ananas comosus. Biologia (Bratisl) 75:1769–1778. https://doi.org/10.2478/s11756-020-00483-1

    Article  CAS  Google Scholar 

  237. Abdelshafy Mohamad OA, Ma J-B, Liu Y-H et al (2020) Beneficial endophytic bacterial populations associated with medicinal plant thymus vulgaris alleviate salt stress and confer resistance to Fusarium oxysporum. Front Plant Sci 11:47. https://doi.org/10.3389/fpls.2020.00047

    Article  PubMed  PubMed Central  Google Scholar 

  238. Soldan R, Mapelli F, Crotti E et al (2019) Bacterial endophytes of mangrove propagules elicit early establishment of the natural host and promote growth of cereal crops under salt stress. Microbiol Res 223–225:33–43. https://doi.org/10.1016/j.micres.2019.03.008

    Article  CAS  PubMed  Google Scholar 

  239. Fan M, Liu Z, Nan L et al (2018) Isolation, characterization, and selection of heavy metal-resistant and plant growth-promoting endophytic bacteria from root nodules of Robinia pseudoacacia in a Pb/Zn mining area. Microbiol Res 217:51–59. https://doi.org/10.1016/j.micres.2018.09.002

    Article  CAS  PubMed  Google Scholar 

  240. Jan R, Khan MA, Asaf S et al (2019) Metal resistant endophytic bacteria reduces cadmium, nickel toxicity, and enhances expression of metal stress related genes with improved growth of Oryza sativa, via regulating its antioxidant machinery and endogenous hormones. Plants 8:363. https://doi.org/10.3390/plants8100363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Chen J, Li N, Han S et al (2020) Characterization and bioremediation potential of nickel-resistant endophytic bacteria isolated from the wetland plant Tamarix chinensis. FEMS Microbiol Lett 367:fnaa098. https://doi.org/10.1093/femsle/fnaa098

    Article  CAS  PubMed  Google Scholar 

  242. Jayakumar A, Krishna A, Mohan M et al (2019) Plant growth enhancement, disease resistance, and elemental modulatory effects of plant probiotic endophytic bacillus sp. Fcl1. Probiotics Antimicrob Proteins 11:526–534. https://doi.org/10.1007/s12602-018-9417-8

    Article  CAS  PubMed  Google Scholar 

  243. Hong CE, Jo SH, Jo I-H, Park JM (2018) Diversity and antifungal activity of endophytic bacteria associated with Panax ginseng seedlings. Plant Biotechnol Rep 12:409–418. https://doi.org/10.1007/s11816-018-0504-9

    Article  Google Scholar 

  244. Khan MS, Gao J, Chen X et al (2020) Isolation and characterization of plant growth-promoting endophytic bacteria Paenibacillus polymyxa SK1 from Lilium lancifolium. BioMed Res Int 2020:1–17. https://doi.org/10.1155/2020/8650957

    Article  CAS  Google Scholar 

  245. de Almeida Lopes KB, Carpentieri-Pipolo V, Fira D et al (2018) Screening of bacterial endophytes as potential biocontrol agents against soybean diseases. J Appl Microbiol 125:1466–1481. https://doi.org/10.1111/jam.14041

    Article  CAS  PubMed  Google Scholar 

  246. Chen L, Wu YD, Chong XY et al (2020) Seed-borne endophytic Bacillus velezensis LHSB1 mediate the biocontrol of peanut stem rot caused by Sclerotium rolfsii. J Appl Microbiol 128:803–813. https://doi.org/10.1111/jam.14508

    Article  CAS  PubMed  Google Scholar 

  247. Nguyen HQ, Vu NT-H, Chu HH et al (2018) Draft genome sequence of streptomyces cavourensis YBQ59, an endophytic producer of antibiotics bafilomycin D, nonactic acid, prelactone B, and 5,11-epoxy-10-cadinanol. Microbiol Resour Announc 7:e01056-e1118. https://doi.org/10.1128/MRA.01056-18

    Article  PubMed  PubMed Central  Google Scholar 

  248. Yang H-R, Yuan J, Liu L-H et al (2019) Endophytic Pseudomonas fluorescens induced sesquiterpenoid accumulation mediated by gibberellic acid and jasmonic acid in Atractylodes macrocephala Koidz plantlets. Plant Cell Tissue Organ Cult PCTOC 138:445–457. https://doi.org/10.1007/s11240-019-01640-4

    Article  CAS  Google Scholar 

  249. Yin DD, Wang YL, Yang M et al (2019) Analysis of Chuanxiong Rhizoma substrate on production of ligustrazine in endophytic Bacillus subtilis by ultra high performance liquid chromatography with quadrupole time-of-flight mass spectrometry. J Sep Sci 42:3067–3076. https://doi.org/10.1002/jssc.201900030

    Article  CAS  PubMed  Google Scholar 

  250. Fu Y (2019) Biotransformation of ginsenoside Rb1 to Gyp-XVII and minor ginsenoside Rg3 by endophytic bacterium Flavobacterium sp. GE 32 isolated from Panax ginseng. Lett Appl Microbiol 68:134–141. https://doi.org/10.1111/lam.13090

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are indebted to Aliah University for the infrastructural support. AM and UNI receive SVMCM fellowship, Govt. of West Bengal. We sincerely thank Dr. Wriddhiman Ghosh, Bose Institute, Kolkata, for his critical review of the manuscript and valuable suggestions. Contribution of Serina Jahan Mondal during her MSc dissertation work is also acknowledged. There is no funding source to acknowledge.

Author information

Authors and Affiliations

Authors

Contributions

MA has conceptualized the work, reviewed the literature, and written the manuscript. BP and AM have done literature survey, and prepared the tables and figures. UNI has done literature survey.

Corresponding author

Correspondence to Masrure Alam.

Ethics declarations

Conflict of interests

All the authors declare that they do not have any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alam, M., Pandit, B., Moin, A. et al. Invisible Inhabitants of Plants and a Sustainable Planet: Diversity of Bacterial Endophytes and their Potential in Sustainable Agriculture. Indian J Microbiol (2024). https://doi.org/10.1007/s12088-024-01225-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12088-024-01225-6

Keywords

Navigation