Skip to main content
Log in

Critical Review on Various Solar Drying Technologies: Direct and Indirect Solar Dryer Systems

  • SOLAR INSTALLATIONS AND THEIR APPLICATION
  • Published:
Applied Solar Energy Aims and scope Submit manuscript

Abstract

Food industry being one of the world’s largest energy intensive industries, lack of proper preservation and storage techniques have led to huge amount of food losses and wastage. Dehydration of food and vegetables has been an effective technique of preservation as this reduces post-harvest losses, make them easier to transport, store and can prevent the growth of microbes. Abundant solar energy being available for free of cost, solar drying is desirable in terms of environment friendliness, economic benefits and is compatible for remote locations. Solar dryers optimize this process with efficient utilization of solar energy and provides higher quality products. Different configurations of solar dryers with diverse configurations and applications have been designed and implemented over the years. Based on the difference in supply and utilization of solar energy, the most prominent solar dryer configurations are direct and indirect solar dryers. This work intends to review the features, design and performance of existing direct and indirect solar dryers. Major challenges such as intermittency and unsteady availability of solar energy has been addressed through thermal energy storage by many research studies, which has also been effectively reviewed. Materials used for construction, design constraints, thermal energy storage integration and experimental results have been discussed and tabulated. The review revealed highly efficient solar collectors such as tube type absorber and evacuated tube collectors, solar concentrators employed dryers capable of achieving elevated temperatures, greenhouse and solar tent dryers with huge capacity and novel dryer and collector designs of superior performance. Various integration techniques of different thermal energy storage materials and their enhancement in performance were eminently observed in the review. As a source of technological attributes and constructional features, this review paper intends to aid the development of solar dryers and food preservation employing renewable energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.
Fig. 22.
Fig. 23.
Fig. 24.
Fig. 25.
Fig. 26.
Fig. 27.
Fig. 28.
Fig. 29.
Fig. 30.
Fig. 31.
Fig. 32.
Fig. 33.
Fig. 34.
Fig. 35.
Fig. 36.
Fig. 37.
Fig. 38.
Fig. 39.
Fig. 40.
Fig. 41.
Fig. 42.
Fig. 43.
Fig. 44.
Fig. 45.
Fig. 46.
Fig. 47.
Fig. 48.
Fig. 49.
Fig. 50.
Fig. 51.
Fig. 52.
Fig. 53.

REFERENCES

  1. Singh, H.P., Sharma, K.D., Subba Reddy, G., et al., Dryland agriculture in India, Challenges Strategies Dryland Agric., 2015, vol. 32, pp. 67–92.

    Article  Google Scholar 

  2. Birthal, P.S., Hazrana, J., and Negi, D.S., Diversification in Indian agriculture towards high value crops: Multilevel determinants and policy implications, Land Use Policy, 2020, vol. 91, p. 104427.

    Article  Google Scholar 

  3. Manida, M., Agriculture in India: Information about Indian agriculture and its importance, 2020. http://aegaeum.com/.

  4. Padakatti, T. and Meti, R., Indian spices: Traditional and medicinal use, Int. J. Home Sci., 2020, vol. 6, pp. 42–44.

    Google Scholar 

  5. Sawicka, B., Post-Harvest Losses of Agricultural Produce, 2020, pp. 654–669.

  6. Mesterházy, Á., Oláh, J., and Popp, J., Losses in the grain supply chain: Causes and solutions, Sustainability, 2020, vol. 12, no. 6, p. 2342.

    Article  Google Scholar 

  7. Mbakouop, A.N., Tchakounté, H., Ankungha, A.I., et al., Design, fabrication and performance assessment of a mixed solar dryer for cocoa beans, Appl. Sol. Energy, 2022, vol. 58, pp. 767–776.

    Article  Google Scholar 

  8. Sharma, V.K., Colangelo, A., and Spagna, G., Experimental investigation of different solar dryers suitable for fruit and vegetable drying, Renewable Energy, 1995, vol. 6, pp. 413–424.

    Article  Google Scholar 

  9. Tagnamas, Z., Kouhila, M., Lamsyehe, H., et al., Solar valorisation of carob leaves (Ceratonia siliqua) using a solar convective dryer, Appl. Sol. Energy, 2021, vol. 57, pp. 377–383.

    Article  Google Scholar 

  10. Muruganantham, P., Kamalakannan, K., and Sathyamurthy, R.Performance analysis of a tubular solar dryer for drying Mexican mint (Plectranthus amboinicus)—An experimental approach, Energy Rep., 2021. https://doi.org/10.1016/j.egyr.2021.05.056

    Book  Google Scholar 

  11. Nazarova, N.M., Nazarov, M.R., and Juraev, T.D., Experimental validation of the mathematical model for a recirculating solar dryer, Appl. Sol. Energy, 2022, vol. 58, pp. 264–272.

    Article  Google Scholar 

  12. Gadonneix, P., World Energy Scenarios, 2013. https://www.worldenergy.org/assets/downloads/World-Energy-Scenarios_Composing-energy-futures-to-2050_Executive-summary.pdf.

  13. Behera, A., Rajak, D.K., Kolahchi, R., et al., Current global scenario of Sputter deposited NiTi smart systems, J. Mater. Res. Technol., 2020, vol. 9, pp. 14582–14598.

    Article  CAS  Google Scholar 

  14. Chelgham, M., Belhadj, M.M., Chelgham, F., et al., Experimental investigation of a single-slope basin still with a built-in additional flat-plate solar air collector, Appl. Sol. Energy, 2022; 58: 250–258.

    Article  Google Scholar 

  15. Srivastava, S., Behera, A., and Biswal, R., Assessing the Grip of Solar Energy Systems on Environmental Sustainability—a review, Micro Nanosyst., 2021, vol. 14, pp. 133–143.

    Article  Google Scholar 

  16. Catorze, C., Tavares, A.P., Cardão, P., et al., Study of a solar energy drying system—energy savings and effect in dried food quality, Energy Rep., 2022, vol. 8, pp. 392–398.

    Article  Google Scholar 

  17. Crippa, M., Solazzo, E., Guizzardi, D., et al., Food systems are responsible for a third of global anthropogenic GHG emissions, Nat. Food, 2021, vol. 2, pp. 198–209.

    Article  CAS  PubMed  Google Scholar 

  18. Boschiero, M., Zanotelli, D., Ciarapica, F.E., et al., Greenhouse gas emissions and energy consumption during the post-harvest life of apples as affected by storage type, packaging and transport, J. Cleaner Prod., 2019, vol. 220, pp. 45–56.

    Article  Google Scholar 

  19. Rajak, D.K., Kumaraswamidhas, L.A., and Das, S., An energy absorption behaviour of foam filled structures, Procedia Mater. Sci., 2014, vol. 5, pp. 164–172.

    Article  CAS  Google Scholar 

  20. Behera, A.K., Pradhan, R.M., Kumar, S., et al., Assessment of groundwater flow dynamics using MODFLOW in shallow aquifer system of Mahanadi delta (east coast), India, Water (Switzerland), 2022, vol. 14. https://doi.org/10.3390/w14040611

  21. Kishor, M.S.V.R., Behera, A., Rajak, D.K., et al., Manufacturing and mechanical characterization of fly-ash-reinforced materials for furnace lining applications, J. Mater. Eng. Perform., 2020, vol. 29, pp. 6307–6321.

    Article  CAS  Google Scholar 

  22. Kumar, R., Ahmadi, M.H., and Rajak, D.K., The economic viability of a thermal power plant: A case study, J. Therm. Anal. Calorim., 2021, vol. 145, pp. 2625–2631.

    Article  CAS  Google Scholar 

  23. Rajak, D.K., Deshpande, P.G., and Kumaraswamidhas, L.A., Experimental analysis of energy absorption behaviour of Al-tube filled with pumice lightweight concrete under axial loading condition, IOP Conf. Ser. Mater. Sci. Eng., 2017, vol. 225, p. 012032.

  24. Naveen, C., Selvakumar, T.S., Kumar, T.P., et al., Performance investigation on solar air heater with optimized parabolic rib geometry based on thermo-hydraulic performance, Appl. Sol. Energy, 2022, vol. 58, pp. 559–566.

    Article  Google Scholar 

  25. Behura, A.K., Mohanty, C.P., Singh, M.R., et al., Performance analysis of three side roughened solar air heater: A preliminary investigation, Materials (Basel), 2022, vol. 15. https://doi.org/10.3390/ma15072541

  26. Karaağaç, M.O., Ergün, A., Ağbulut, Ü., et al., Experimental analysis of CPV/T solar dryer with nano-enhanced PCM and prediction of drying parameters using ANN and SVM algorithms, Sol. Energy, 2021, vol. 218, pp. 57–67.

    Article  ADS  Google Scholar 

  27. Mohanty, S., Patra, P.K., Sahoo, S.S., et al., Forecasting of solar energy with application for a growing economy like India: Survey and implication, Renewable Sustainable Energy Rev., 2017, vol. 78, pp. 539–553.

    Article  Google Scholar 

  28. Kumar Behura, A., Kumar, A., Kumar Rajak, D., et al., Towards better performances for a novel rooftop solar PV system, Sol. Energy, 2021, vol. 216, pp. 518–529.

    Article  CAS  ADS  Google Scholar 

  29. Rejab, M.N. and Johar, M.A., Perturb and observe parameter tuning to harvest thermal energy from solar radiation at rooftop and attic area: A comparative study, Appl. Sol. Energy, 2022, vol. 58, pp. 369–378.

    Article  Google Scholar 

  30. Ekechukwu, O.V., Review of solar-energy drying systems I: An overview of drying principles and theory, Energy Convers. Manage., 1999, vol. 40, pp. 593–613.

    Article  CAS  Google Scholar 

  31. Ilhan Ceylana, A., Solar-assisted fluidized bed dryer integrated with a heat pump for mint leaves, Appl. Therm. Eng., 2016, vol. 105, pp. 899–905.

    Article  Google Scholar 

  32. Banout, J., Solar drying systems, in Solar Drying Technology, Green Energy Technology, Singapore: Springer Nature, 2017, pp. 39–67.

    Google Scholar 

  33. Sharma, A. and Dutta, P.P., Performance studies of low temperature solar drying of fresh tea leaves (Camellia assamica), Appl. Sol. Energy, 2022, vol. 58, pp. 423–432.

    Article  Google Scholar 

  34. Fuller, R.J., Solar drying—a technology for sustainable agriculture and food production, in Solar Energy Conversion and Photoenergy Systems, 2010, vol. 3. https://www.eolss.net/Sample-Chapters/C08/E3-07-02-02.pdf.

  35. Norton, B., Characteristics of different systems for the solar drying of crops, in Solar Drying Technology, Green Energy Technology, Singapore: Springer Nature, 2017, pp. 69–88.

    Google Scholar 

  36. Sontakke, M.S. and Salve, S.P., Solar drying technologies: A review, Renewable Sustainable Energy Rev., 2012, vol. 16, pp. 2652–2670.

    Article  Google Scholar 

  37. Can, A., Drying kinetics of pumpkin seeds, Int. J. Energy Res., 2000, vol. 24, pp. 965–975.

    Article  CAS  Google Scholar 

  38. Arun S. Mujumdar and Sakamon Devahastin, Fundamental principles of drying, in Handbook of Industrial Drying, Arun S. Mujumdar, Ed., Taylor and Francis, 2014, pp. 1–22.

    Google Scholar 

  39. Visavale, G.L., Principles, classification and selection of solar dryers, in Solar Drying: Fundamentals, Applications and Innovations, Hii, C.L., Ong, S.P., Jangam, S.V., and Mujumdar A., Eds., Singapore: TPR Group, 2012, pp. 1–50.

    Google Scholar 

  40. Singh, P., Vyas, S., and Yadav, A., Experimental comparison of open sun drying and solar drying based on evacuated tube collector, Int. J. Sustainable Energy, 2019, vol. 38, pp. 348–367.

    Article  Google Scholar 

  41. Kalogirou, S.A., Industrial process heat, chemistry applications, and solar dryers, in Solar Energy Engineering, Elsevier, 2009, pp. 391–420.

    Google Scholar 

  42. Kamran, M., Solar energy, in Renewable Energy Conversion Systems, Elsevier, 2021, pp. 109–152.

    Google Scholar 

  43. Alimohammadi, Z., Samimi Akhijahani, H., and Salami, P., Thermal analysis of a solar dryer equipped with PTSC and PCM using experimental and numerical methods, Sol. Energy, 2020, vol. 201, pp. 157–177.

    Article  CAS  ADS  Google Scholar 

  44. Mugi, V.R. and Chandramohan, V.P., Drying Kinetics of Muskmelon Slices and Characteristics of an Indirect Solar Dryer under Natural and Forced Convection: A Comparative Study. Appl. Sol. Energy, 2022, vol. 58, pp. 829–846.

    Article  Google Scholar 

  45. Keawsuntia, Y., Experimental investigation of active solar dryer for drying of chili, Adv. Mater. Res., 2014, vols. 953–954, pp. 16–19.

    Article  Google Scholar 

  46. Chaudhari, A.D. and Salve, S.P., A review of solar dryer technologies, Int. J. Res. Advent. Technol., 2014, vol. 15, pp. 9–10.

    Google Scholar 

  47. Vijayan, S., Arjunan, T.V., and Kumar, A., Exergo-environmental analysis of an indirect forced convection solar dryer for drying bitter gourd slices, Renewable Energy, 2020, vol. 146, pp. 2210–2223.

    Article  Google Scholar 

  48. Behera, A., Energy harvesting and storing materials, in Advanced Materials, Cham: Springer, 2022, pp. 507–555.

    Book  Google Scholar 

  49. Srinivasan, G., Rabha, D.K., and Muthukumar, P., A review on solar dryers integrated with thermal energy storage units for drying agricultural and food products, Sol. Energy, 2021, vol. 229, pp. 22–38.

    Article  ADS  Google Scholar 

  50. Kant, K., Shukla, A., Sharma, A., et al., Thermal energy storage based solar drying systems: A review, Innov. Food Sci. Emerg. Technol., 2016, vol. 34, pp. 86–99.

    Article  Google Scholar 

  51. Lamrani, B. and Draoui, A., Thermal performance and economic analysis of an indirect solar dryer of wood integrated with packed-bed thermal energy storage system: A case study of solar thermal applications, Dry Technol., 2021, vol. 39, pp. 1371–1388.

    Article  Google Scholar 

  52. Gautam, A. and Saini, R.P., A review on sensible heat based packed bed solar thermal energy storage system for low temperature applications, Sol. Energy, 2020, vol. 207, pp. 937–956.

    Article  ADS  Google Scholar 

  53. Kumar, A., Behura, A.K., Rajak, D.K., et al., Performance of heat transfer mechanism in nucleate pool boiling—a relative approach of contribution to various heat transfer components, Case Stud. Therm. Eng., 2021, vol. 24, p. 100827.

    Article  Google Scholar 

  54. Dubey, A., Sagar, A., Malkani, P., et al., A comprehensive review on greenhouse drying technology, J. Agric. Ecol. Res. Int., 2020, vol. 21, no. 1, pp. 10–20.

    Google Scholar 

  55. Pielichowska, K. and Pielichowski, K., Phase change materials for thermal energy storage, Prog. Mater. Sci., 2014, vol. 65, pp. 67–123.

    Article  CAS  Google Scholar 

  56. Kumar, P. and Singh, D., Advanced technologies and performance investigations of solar dryers: A review, Renewable Energy, Focus 2020, vol. 35, pp. 148–158.

    Google Scholar 

  57. Sodha, M.S., Dang, A., Bansal, P.K., et al., An analytical and experimental study of open sun drying and a cabinet type drier, Energy Convers. Manage., 1985, vol. 25, pp. 263–271.

    Article  Google Scholar 

  58. Sharma, S., Sharma, V.K., Jha, R., et al., Evaluation of the performance of a cabinet type solar dryer, Energy Convers Manage., 1990, vol. 30, pp. 75–80.

    Article  Google Scholar 

  59. Diemuodeke, E.O. and Momoh, O.L.Y., Design and fabrication of a direct natural convection solar dryer for tapioca, Leonardo Electron. J. Pract. Technol., 2011, vol. 10, pp. 95–104.

    Google Scholar 

  60. Alonge, A.F. and Hammed, R.O., A direct passive solar dryer for tropical crops, African Crop Sci. Conf., 2007, vol. 8, pp. 1643–1646.

  61. Spall, S. and Sethi, V.P., Design, modeling and analysis of efficient multi-rack tray solar cabinet dryer coupled with north wall reflector, Sol. Energy, 2020, vol. 211, pp. 908–919.

    Article  ADS  Google Scholar 

  62. Alonge, A.F. and Omoniwa, A.O., Development and modification of a direct passive solar dryer, NABEC-CSBE/SCGAB 2012 Joint Meeting and Technical Conference Northeast Agricultural and Biological Engineering Conference Canadian Society for Bioengineering, 2012, pp. 1–10.

  63. Ben Eke, A., Investigation of low cost solar collector for drying vegetables in rural areas, Agric. Eng. Int. CIGR J., 2014, vol. 16, pp. 118–125.

    Google Scholar 

  64. Ekechukwu, O.V. and Norton, B., Design and measured performance of a solar chimney for natural circulation solar energy dryers, J. Sol. Energy Eng. Trans. ASME, 1996, vol. 118, pp. 69–71.

    Article  Google Scholar 

  65. Eze, J.I., Evaluation of the efficacy of a family sized solar cabinet dryer in food preservation, Am. J. Sci. Ind. Res., 2010, vol. 1, pp. 610–617.

    Google Scholar 

  66. Gbaha, P., Yobouet Andoh, H., Kouassi Saraka, J., et al., Experimental investigation of a solar dryer with natural convective heat flow. Renewable Energy, 2007, vol. 32, pp. 1817–1829.

    Article  CAS  Google Scholar 

  67. Mennouche, D., Bouchekima, B., Boubekri, A., et al., Valorization of rehydrated Deglet-Nour dates by an experimental investigation of solar drying processing method, Energy Convers. Manage., 2014, vol. 84, pp. 481–487.

    Article  Google Scholar 

  68. Afriyie, J.K., Nazha, M.A.A., Rajakaruna, H., et al., Experimental investigations of a chimney-dependent solar crop dryer, Renewable Energy, 2009, vol. 34, pp. 217–222.

    Article  CAS  Google Scholar 

  69. Murthy, M.V.R., A review of new technologies, models and experimental investigations of solar driers. Renewable Sustainable Energy Rev., 2009, vol. 13, pp. 835–844.

    Article  Google Scholar 

  70. Selvaraj, M., Sadagopan, P., and Vairavel, M., Review on latent heat solar air collectors, Int. J. Adv. Res. Eng. Technol., 2019, vol. 10, pp. 112–121.

    Article  Google Scholar 

  71. Hallak, H., Hilal, J., Hilal, F., et al., The staircase solar dryer: Design and characteristics, Renewable Energy, 1996, vol. 7, pp. 177–183.

    Article  Google Scholar 

  72. Singh, S., Singh, P.P., and Dhaliwal, S.S., Multi-shelf portable solar dryer, Renewable Energy, 2004, vol. 29, pp. 753–765.

    Article  Google Scholar 

  73. Singh, M. and Sethi, V.P., On the design, modelling and analysis of multi-shelf inclined solar cooker-cum-dryer, Sol. Energy, 2018, vol. 162, pp. 620–636.

    Article  ADS  Google Scholar 

  74. Jain, A., Sharma, M., Kumar, A., et al., Computational fluid dynamics simulation and energy analysis of domestic direct-type multi-shelf solar dryer, J. Therm. Anal. Calorim., 2019, vol. 136, pp. 173–184.

    Article  CAS  Google Scholar 

  75. Bentayeb, F., Bekkioui, N., and Zeghmati, B., Modelling and simulation of a wood solar dryer in a Moroccan climate. Renewable Energy, 2008; 33: 501–506.

    Article  Google Scholar 

  76. Khater, A.E., Air cabinet solar dryer, Egypt J. Agric. Res., 2016, vol. 94, pp. 709–721.

    Google Scholar 

  77. Hidalgo, L.F., Candido, M.N., Nishioka, K., et al., Natural and forced air convection operation in a direct solar dryer assisted by photovoltaic module for drying of green onion, Sol. Energy, 2021, vol. 220, pp. 24–34.

    Article  ADS  Google Scholar 

  78. Akoy, E.O.M., Ismail, M., Ahmed, E-F., et al., Design and construction of a solar dryer for mango slices, 2015, vol. 4, pp. 1946–1951.

  79. Ghazanfari, A., Tabil, L., and Sokhansanj, S., Evaluating a solar dryer for in-shell drying of split pistachio nuts, Dry Technol., 2003, vol. 21, pp. 1357–1368.

    Article  Google Scholar 

  80. Tabassum, S., Bashar, M., Islam, M., et al., Design and development of solar dryer for food preservation, Bangladesh J. Sci. Ind. Res., 2019, vol. 54, pp. 155–160.

    Article  CAS  Google Scholar 

  81. Borah, A., Hazarika, K., and Khayer, S.M., Drying kinetics of whole and sliced turmeric rhizomes (Curcuma longa L.) in a solar conduction dryer, Inf. Process. Agric., 2015, vol. 2, pp. 85–92.

    Google Scholar 

  82. Shrikant, D. and Londhe, S.D.L., Performance of natural convection direct type solar dryer with or without reflector and chimney, Int. J. Res. Biosci. Agric. Technol., 2015, vol. 2, pp. 439–443.

    Google Scholar 

  83. Paul, B., Singh, R.N., and Fuskele, V., A review of solar dryers designed and developed for chilli, SSRN Electron. J., 2021, pp. 1–12.

    Google Scholar 

  84. Jairaj, K.S., Singh, S.P., and Srikant, K., A review of solar dryers developed for grape drying. Sol. Energy, 2009, vol. 83, pp. 1698–1712.

    Article  CAS  ADS  Google Scholar 

  85. Narkar, R.R., Misal, N., Dr. Pawar, P., et al., Comparison of various solar drying systems for grapes raisin making, Int. J. Adv. Eng. Manage., 2014, vol. 1. www.ijaem.org.

  86. James, P.S., A retractable solar dryer to aid self-reliance of homesteads in the post-covid-19 era, Agric. Eng. Today, 2021, vol. 45, pp. 1–7.

    Article  Google Scholar 

  87. Chauhan, P.S., Kumar, A., and Gupta, B., A review on thermal models for greenhouse dryers, Renewable Sustainable Energy Rev., 2017, vol. 75, pp. 548–558.

    Article  Google Scholar 

  88. Prakash, O. and and Kumar, A., Solar greenhouse drying: A review, Renewable Sustainable Energy Rev., 2014, vol. 29, pp. 905–910.

    Article  Google Scholar 

  89. Sahdev, R.K., Kumar, M., and Dhingra, A.K., A review on applications of greenhouse drying and its performance, Agric. Eng. Int. CIGR J., 2016, vol. 18, pp. 395–412.

    Google Scholar 

  90. Sahdev, R.K., Kumar, M., and Dhingra, A.K., A comprehensive review of greenhouse shapes and its applications, Front. Energy, 2019, vol. 13, pp. 427–438.

    Article  Google Scholar 

  91. Prakash, O. and Kumar, A., Environomical analysis and mathematical modelling for tomato flakes drying in a modified greenhouse dryer under active mode, Int. J. Food Eng., 2014, vol. 10, pp. 669–681.

    Article  CAS  Google Scholar 

  92. Perea-Moreno, A.J., Juaidi, A., and Manzano-Agugliaro, F., Solar greenhouse dryer system for wood chips improvement as biofuel, J. Cleaner Prod., 2016, vol. 135, pp. 1233–1241.

    Article  Google Scholar 

  93. Sagarika, N., Kapdi, S.S., Sutar, R.F., et al., Study on drying kinetics of date palm fruits in greenhouse dryer, J. Pharmacogn. Phytochem., 2019, vol. 8, pp. 2074–2079.

    Google Scholar 

  94. Mohsin, A.S.M., Maruf, M.N.I., Sayem, A.H.M., et al., Prospect and future of solar dryer: Perspective Bangladesh, Int. J. Eng. Technol., 2011, vol. 3, pp. 165–170.

    Google Scholar 

  95. Chauhan, P.S. and Kumar, A., Performance analysis of greenhouse dryer by using insulated north-wall under natural convection mode, Energy Rep., 2016, vol. 2, pp. 107–116.

    Article  Google Scholar 

  96. Chauhan, P.S. and Kumar, A., Thermal modeling and drying kinetics of gooseberry drying inside north wall insulated greenhouse dryer, Appl. Therm. Eng., 2018, vol. 130, pp. 587–597.

    Article  Google Scholar 

  97. Mani, P., Manikandan, G., Mahato, M., et al., Experimental investigation of north wall insulated greenhouse solar dryer with different reflectors, AIP Conf. Proc., 2020, vol. 2311. https://doi.org/10.1063/5.0034280

  98. Kumar, A., Singh, R., Prakash, O., et al., Review on global solar drying status, Agric. Eng. Int. CIGR J., 2014, vol. 16, pp. 161–177.

    Google Scholar 

  99. Tiwari, S., Tiwari, G.N., and Al-Helal, I.M., Development and recent trends in greenhouse dryer: A review, Renewable Sustainable Energy Rev., 2016, vol. 65, pp. 1048–1064.

    Article  Google Scholar 

  100. Singh, P., Shrivastava, V., and Kumar, A., Recent developments in greenhouse solar drying: A review, Renewable Sustainable Energy Rev., 2018, vol. 82, pp. 3250–3262.

    Article  Google Scholar 

  101. Pankaew, P., Aumporn, O., Janjai, S., et al., Performance of a large-scale greenhouse solar dryer integrated with phase change material thermal storage system for drying of chili, Int. J. Green Energy, 2020, vol. 17, pp. 632–643.

    Article  CAS  Google Scholar 

  102. Vijayrakesh, K., Muthuvel, S., Gopinath, G.R., et al., Experimental investigation of the performance of paraffin wax-packed floor on a solar dryer, J. Energy Storage, 2021, vol. 43, p. 103163.

    Article  Google Scholar 

  103. Berroug, F., Lakhal, E.K., El Omari, M., et al., Thermal performance of a greenhouse with a phase change material north wall, Energy Build., 2011, vol. 43, pp. 3027–3035.

    Article  Google Scholar 

  104. Gopinath, G.R., Muthuvel, S., Muthukannan, M., Sudhakarapandian, R., Praveen Kumar, B., Santhan Kumar, Ch., and Sudhakar Babu Thanikanti, Design, development and performance testing of thermal energy storage based solar dryer systems for seeded grapes, Sustain Energy Technol. Assess., 2022, vol. 51, p. 101923.

    Google Scholar 

  105. Ayyappan, S., Mayilsamy, K., and Sreenarayanan, V.V., Performance improvement studies in a solar greenhouse drier using sensible heat storage materials, Heat Mass Transfer, 2016, vol. 52, pp. 459–467.

    Article  CAS  ADS  Google Scholar 

  106. Ahmad, A. and Prakash, O., Thermal analysis of north wall insulated greenhouse dryer at different bed conditions operating under natural convection mode, Environ. Prog. Sustainable Energy, 2019, vol. 38, pp. 1–12.

    Article  Google Scholar 

  107. Afriyie, J.K., Achaw, O.-W., Aikins, K.A., et al., Field drying of cassava in a solar tent dryer equipped with a solar chimney, Int. J. Sci. Eng. Appl., 2016, vol. 5, pp. 161–174.

    Google Scholar 

  108. Lithi, U.J., Surovi, S., Md Faridullah, et al., Effects of drying technique on the quality of Mola (Amblypharyngodon mola) dried by solar tent dryer and open sun rack dryer, Res. Agric. Livest. Fish., 2020, vol. 7, pp. 121–128.

    Article  Google Scholar 

  109. Ozyurt, C.E., Yesilcimen, H.O., Mavruk, S., et al., Assessment of some of the feeding aspects and reproduction of S. undosquamis distributed in the İskenderun Bay, Turkish J. Fish. Aquat. Sci., 2017, vol. 17, pp. 51–60.

    Google Scholar 

  110. Adu, E.A., Bodunde, A.A., and Awagu, E.F., Design, construction and performance evaluation of a solar agricultural drying tent, Int. J. Eng. Res. Technol., 2012, vol. 1, pp. 46–54.

    Google Scholar 

  111. Chiwaula, L.S., Kawiya, C., and Kambewa, P.S., Evaluating economic viability of large fish solar tent dryers, Agric. Res., 2020, vol. 9, pp. 270–276.

    Article  Google Scholar 

  112. Lutz, K. and Mühlbauer, W., Solar tunnel dryer with integrated collector, Dry. Technol., 1986, vol. 4, pp. 583–603.

    Article  Google Scholar 

  113. Janjai, S. and Keawprasert, T., Design and performance of a solar tunnel dryer with a polycarbonate cover, Int. Energy J., 2006, vol. 7, pp. 187–194.

    Google Scholar 

  114. Demir, K. and Sacilik, K., Solar drying of Ayaş tomato using a natural convection solar tunnel dryer, J. Food, Agric. Environ., 2010, vol. 8, pp. 7–12.

    Google Scholar 

  115. Srisittipokakun, N., Kirdsiri, K., and Kaewkhao, J., Solar drying of Andrographis paniculata using a parabolicshaped solar tunnel dryer, Procedia Eng., 2012, vol. 32, pp. 839–846.

    Article  Google Scholar 

  116. Munir, A., Sultan, U., and Iqbal, M., Development and performance evaluation of a locally fabricated portable solar tunnel dryer for drying of fruits, vegetables and medicinal plants, Pakistan J. Agric. Sci., 2013, vol. 50, pp. 493–498.

    Google Scholar 

  117. Dufera, L.T., Hofacker, W., Esper, A., et al., Experimental evaluation of drying kinetics of tomato (Lycopersicum esculentum L.) slices in twin layer solar tunnel dryer, Energy Sustain Dev., 2021, vol. 61, pp. 241–250.

    Article  Google Scholar 

  118. Patil, R., and Gawande, R., A review on solar tunnel greenhouse drying system. Renewable Sustainable Energy Rev., 2016, vol. 56, pp. 196–214.

    Article  Google Scholar 

  119. Ayyappan, S., Performance and CO2 mitigation analysis of a solar greenhouse dryer for coconut drying, E-nergy Environ., 2018, vol. 29, pp. 1482–1494.

    Article  Google Scholar 

  120. Ragul Kumar, N., Natarajan, M., Ayyappan, S., et al., Analysis of solar tunnel dryer performance with red chili drying in two intervals, Res. J. Chem. Environ., 2020, vol. 24, pp. 125–129.

    Google Scholar 

  121. Badaoui, O., Hanini, S., Djebli, A., et al., Experimental and modelling study of tomato pomace waste drying in a new solar greenhouse: Evaluation of new drying models. Renewable Energy, 2019, vol. 133, pp. 144–155.

    Article  Google Scholar 

  122. Ronoh, E., Kanali, C., Mailutha, J., et al., Thin layer drying kinetics of amaranth (Amaranthus cruentus) grains in a natural convection solar tent dryer, African J. Food, Agric. Nutr. Dev., 2010, vol. 10, pp. 2218–2233.

    Google Scholar 

  123. Mohod, A.G., Khandetod, Y.P., and Shrirame, H.Y., Development and evaluation of solar tunnel dryer for commercial fish drying, J. Inst. Eng. Ser. A, 2014, vol. 95, pp. 1–8.

    Article  Google Scholar 

  124. Olayemi, F., Oyewole, S., Omodara, M., et al., Development of effective drying technology for quality enhancement of Whitings fish (Merlangius merlangius), Agron. Africaine Sp., 2017, vol. 29, pp. 91–98.

    Google Scholar 

  125. Sevda, M.S., and Rathore, N.S., Performance evaluation of the semicylindrical solar tunnel dryer for drying handmade paper, J. Renewable Sustainable Energy, 2010, vol. 2, pp. 1–19.

    Article  Google Scholar 

  126. Chavan, B.R., Yakupitiyage, A., and Kumar, S., Drying performance, quality characteristics, and financial evaluation of Indian Mackerel (Rastrilliger kangurta) dried by a solar tunnel dryer, Thammasat Int. J. Sci. Technol., 2011, vol. 16, pp. 11–25.

    Google Scholar 

  127. Venkatesh, P.M., et al., Design and fabrication of solar tunnel dryer for copra application, Inf. Technol. Ind., 2021, vol. 9, pp. 267–273.

    Google Scholar 

  128. Seveda, M.S., Design and development of walk-in type hemicylindrical solar tunnel dryer for industrial use, ISRN Renewable Energy, 2012, vol. 2012, pp. 1–9.

    Article  Google Scholar 

  129. Andrew Mbacho, S., Thoruwa, T., Kipngetich Lang’at, N., et al., Performance of an integrated solar-greenhouse photovoltaic ventilated dryer with clay-CaCl2 energy storage desiccants for tomato drying, Am. J. Energy Eng., 2021, vol. 9, p. 19.

    Article  Google Scholar 

  130. Kumar, M., Kumar Sahdev, R., Tiwari, S., et al., Thermal performance and kinetic analysis of vermicelli drying inside a greenhouse for sustainable development, Sustainable Energy Technol. Assess., 2021, vol. 44, p. 101082.

    Article  Google Scholar 

  131. Morad, M.M., El-Shazly, M.A., Wasfy, K.I., et al., Thermal analysis and performance evaluation of a solar tunnel greenhouse dryer for drying peppermint plants, Renewable Energy, 2017, vol. 101, pp. 992–1004.

    Article  Google Scholar 

  132. Almuhanna, E.A., Utilization of a solar greenhouse as a solar dryer for drying dates under the climatic conditions of the eastern province of Saudi Arabia, J. Agric. Sci., 2011, vol. 4, pp. 237–246.

    Google Scholar 

  133. Kumar, A., Rajak, D.K., and Kumar, R., Optimization of packed bed solar air heaters—a thermo-hydraulic approach, Energy Storage, 2020, vol. 2, pp. 1–7.

    Article  Google Scholar 

  134. Abdukarimov, B.A. and Kuchkarov, A.A., Research of hydrodynamic processes occurring in solar air heater collectors with a concave air duct absorber, Appl. Sol. Energy, 2022, vol. 58, pp. 847–853.

    Article  Google Scholar 

  135. Kokate, Y.D., Baviskar, P.R., and Nukulwar, M.R., Mathematical modelling and drying kinetics of onion and garlic in indirect solar dryer, Appl. Sol. Energy, 2022, vol. 58, pp. 643–660.

    Article  Google Scholar 

  136. Green, M.G., and Schwarz, D., Solar drying technology for food preservation, Energy, 2001, vol. 49, pp. 1–8.

    Google Scholar 

  137. Kumar, M., Sansaniwal, S.K., and Khatak, P., Progress in solar dryers for drying various commodities, Renewable Sustainable Energy Rev., 2016, vol. 55, pp. 346–360.

    Article  Google Scholar 

  138. Demissie, P., Hayelom, M., Kassaye, A., et al., Design, development and CFD modeling of indirect solar food dryer, Energy Procedia, 2019, vol. 158, pp. 1128–1134.

    Article  Google Scholar 

  139. Demissie, P., Hayelom, M., Kassaye, A., et al., Comparison of a mixed modes solar dryer to a direct mode solar dryer for African indigenous vegetables and chili processing, J. Food Process. Preserv., 2017, vol. 41, pp. 1–7.

    Google Scholar 

  140. Varun, Sunil, Avdhesh Sharma, and Naveen Sharma, Construction and performance analysis of an indirect solar dryer integrated with solar air heater, Procedia Eng., 2012, vol. 38, pp. 3260–3269.

    Article  Google Scholar 

  141. Matavel, C.E., Hoffmann, H., Rybak, C., et al., Experimental evaluation of a passive indirect solar dryer for agricultural products in Central Mozambique, J. Food Process. Preserv., 2021, vol. 45, pp. 1–11.

    Article  Google Scholar 

  142. El-Sebaey, M.S., Mousavi, S.M.T., Shams El-Din, S., et al., An experimental case study on development the design and the performance of indirect solar dryer type for drying bananas, Sol. Energy, 2023, vol. 255, pp. 50–59.

    Article  ADS  Google Scholar 

  143. Al-Neama, M.A. and Farkas, I., Influencing of solar drying performance by chimney effect, Hungarian Agric. Eng., 2016, vol. 30. https://doi.org/10.17676/hae.2016.30.11

  144. Tedesco, F.C., Buhler, A.J., and Wortmann, S., Design, construction, and analysis of a passive indirect solar dryer with chimney, J. Sol. Energy, Eng. Trans. ASME, 2019, vol. 141, pp. 1–9.

    Google Scholar 

  145. Lingayat, A., Chandramohan, V.P., and Raju, V.R.K., Energy and exergy analysis on drying of banana using indirect type natural convection solar dryer, Heat Transfer Eng., 2020, vol. 41, pp. 551–561.

    Article  CAS  ADS  Google Scholar 

  146. Geete, A., Energy and exergy analyses of fabricated solar drying system with smooth and rough surfaces at different conditions: A case study, Heat Transfer, 2021, vol. 50, no. 6, pp. 6259–6284. https://doi.org/10.1002/htj.22171

    Article  Google Scholar 

  147. Maiti, S., Patel, P., Vyas, K., et al., Performance evaluation of a small scale indirect solar dryer with static reflectors during non-summer months in the Saurashtra region of western India. Sol. Energy, 2011, vol. 85, pp. 2686–2696.

    Article  ADS  Google Scholar 

  148. Bhavsar, H.P. and Patel, C.M., Performance investigation of natural and forced convection cabinet solar dryer for ginger drying, Mater. Today Proc., 2021, vol. 47, pp. 6128–6133.

    Article  CAS  Google Scholar 

  149. Khama, R., Aissani, F., and Alkama, R., Design and performance testing of an industrial-scale indirect solar dryer, J. Eng. Sci. Technol., 2016, vol. 11, pp. 1263–1281.

    Google Scholar 

  150. El-Sebaii, A.A. and Shalaby, S.M., Experimental investigation of an indirect-mode forced convection solar dryer for drying thymus and mint, Energy Convers. Manage., 2013, vol. 74, pp. 109–116.

    Article  Google Scholar 

  151. Goud, M., Reddy, M.V.V., Chandramohan, V.P., et al., A novel indirect solar dryer with inlet fans powered by solar PV panels: Drying kinetics of Capsicum annum and Abelmoschus esculentus with dryer performance, Sol. Energy, 2019, vol. 194, pp. 871–885.

    Article  ADS  Google Scholar 

  152. Melike Sultan, Karasu Asnaz, and Ayse Ozdogan, Comparative performance study of different types of solar dryers towards sustainable agriculture, Energy Rep., 2021, vol. 7, pp. 6107–6118.

    Article  Google Scholar 

  153. Getahun, E., Vanierschot, M., Gabbiye, N., et al., Computational fluid dynamic modeling and simulation of red chili solar cabinet dryer, in ICAST 2019: Advances of Science and Technology, Cham: Springer, 2020, pp. 597–609.

    Google Scholar 

  154. Akpinar, E.K., Drying of parsley leaves in a solar dryer and under open sun: Modeling, energy and exergy aspects, J. Food Process. Eng., 2011, vol. 34, pp. 27–48.

    Article  Google Scholar 

  155. Hegde, V.N., Hosur, V.S., Rathod, S.K., et al., Design, fabrication and performance evaluation of solar dryer for banana, Energy Sustain. Soc., 2015, vol. 5, p. 23. https://doi.org/10.1186/s13705-015-0052-x

    Article  Google Scholar 

  156. Pangavhane, D.R., Sawhney, R.L., and Sarsavadia, P.N., Design, development and performance testing of a new natural convection solar dryer, Energy, 2002, vol. 27, pp. 579–590.

    Article  Google Scholar 

  157. Musembi, M.N., Kiptoo, K.S., and Yuichi, N., Design and analysis of solar dryer for mid-latitude region, Energy Procedia, 2016, vol. 100, pp. 98–110.

    Article  Google Scholar 

  158. Kokate, Y.D., Baviskar, P.R., Baviskar, K.P., et al., Design, fabrication and performance analysis of indirect solar dryer, Mater. Today Proc., 2023, vol. 77, pp. 748–753.

    Article  Google Scholar 

  159. Krabch, H., Tadili, R., and Bargach, M., Indirect solar dryer with a single compartment for food drying . Application to the drying of the pear, Sol. Energy, 2022, vol. 240, pp. 131–139.

    Article  CAS  ADS  Google Scholar 

  160. Reddy, V., Gilago, M.C., and Chandramohan, V.P., Energy and exergy investigation of indirect solar dryer under natural and forced convection while drying muskmelon slices, Energy Nexus, 2022, vol. 8, p. 100153.

    Article  Google Scholar 

  161. Anindita Sharma and Partha P. Dutta, Exergy analysis of a solar thermal energy powered tea withering trough, Mater. Today: Proc., 2021, pp. 3123–3128.

  162. Velraj, R., Sensible heat storage for solar heating and cooling systems, in Advances in Solar Heating and Cooling, Amsterdam: Elsevier, 2016, pp. 399–428. https://doi.org/10.1016/B978-0-08-100301-5.00015-1

    Book  Google Scholar 

  163. Walke, P.V., Phadke, P.C., and Rambhad, K.S., Performance evaluation of forced convection desiccant bed solar dryer integrated with sensible heat storage material, Int. J. Anal. Exp. Finite Elem. Anal., 2018, vol. 5, no. 2, pp. 24–35. https://doi.org/10.26706/ijaefea.2.5.20180501

    Article  Google Scholar 

  164. Mohanraj, M. and Chandrasekar, P., Performance of a forced convection solar drier integrated with gravel as heat storage material, Proc. IASTED Int. Conf. Sol. Ener-gy, SOE 2009, 2009, pp. 51–54.

  165. Essalhi, H., Benchrifa, M., Tadili, R., et al., Experimental and theoretical analysis of drying grapes under an indirect solar dryer and in open sun, Innov. Food Sci. Emerg. Technol., 2018, vol. 49, pp. 58–64.

    Article  CAS  Google Scholar 

  166. Lingayat, A.B., Chandramohan, V.P., Raju, V.R.K., et al., A review on indirect type solar dryers for agricultural crops—dryer setup, its performance, energy storage and important highlights, Appl. Energy, 2020, vol. 258, p. 114005.

    Article  Google Scholar 

  167. Shalaby, S.M., Bek, M.A., and El-Sebaii, A.A., Solar dryers with PCM as energy storage medium: A review. Renewable Sustainable Energy Rev., 2014, vol. 33, pp. 110–116.

    Article  CAS  Google Scholar 

  168. Agrawal, A. and Sarviya, R.M., A review of research and development work on solar dryers with heat storage, Int. J. Sustainable Energy, 2016, vol. 35, pp. 583–605.

    Article  Google Scholar 

  169. Atalay, H. and Cankurtaran, E., Energy, exergy, exergoeconomic and exergo-environmental analyses of a large scale solar dryer with PCM energy storage medium, Energy, 2021, vol. 216, p. 119221.

    Article  Google Scholar 

  170. Akmak, G. and Yildiz, C., The drying kinetics of seeded grape in solar dryer with PCM-based solar integrated collector, Food Bioprod. Process., 2011, vol. 89, pp. 103–108.

    Article  Google Scholar 

  171. Sain, P., Songara, V., Karir, R., et al., Natural convection type solar dryer with latent heat storage, Proc. 2013 Int. Conf. Renewable Energy, Sustainable Energy, ICRESE 2013, 2014, pp. 9–14.

  172. Gilago, M.C., Reddy Mugi, V., and Chandramohan, V.P., Energy-exergy and environ-economic (4E) analysis while drying ivy gourd in a passive indirect solar dryer without and with energy storage system and results comparison. Sol. Energy, 2022, vol. 240, pp. 69–83.

    Article  ADS  Google Scholar 

  173. Madhankumar, S., Karthickeyan Viswanathan, Wei Wu, and Muhammad Ikhsan Taipabu, Analysis of indirect solar dryer with PCM energy storage material: Energy, economic, drying and optimization, Sol. Energy, 2023, vol. 249, pp. 667–683.

    Article  ADS  Google Scholar 

  174. Goswami, D.Y., Lavania, A., Shahbazi, S., et al., Analysis of a geodesic dome solar fruit dryer, Dry Technol., 1991, vol. 9, pp. 677–691.

    Article  Google Scholar 

  175. Goswami, D.Y., Lavania, A., Shahbazi, A., et al., Experimental study of a geodesic dome solar fruit dryer, Proc. Intersoc. Energy Convers. Eng. Conf., 1990, vol. 5, pp. 156–161.

  176. Janjai, S., Srisittipokakun, N., Bala, B.K., Experimental and modelling performances of a roof-integrated solar drying system for drying herbs and spices, Energy, 2008, vol. 33, pp. 91–103.

    Article  CAS  Google Scholar 

  177. Sreekumar, A., Techno-economic analysis of a roof-integrated solar air heating system for drying fruit and vegetables, Energy Convers. Manage., 2010, vol. 51, pp. 2230–2238.

    Article  Google Scholar 

  178. Chavda, T.V. and Kumar, N., Solar dryers for high value agro products, 2015. https://www.researchgate.net/publication/237817172.

  179. Kamble, A.K., Pardeshi, I.L., Singh, P.L., et al., Drying of chilli using solar cabinet dryer coupled with gravel bed heat storage system, J. Food Res. Technol., 2017, vol. 1, pp. 87–94.

    Google Scholar 

  180. Dina, S.F., Ambarita, H., Napitupulu, F.H., et al., Study on effectiveness of continuous solar dryer integrated with desiccant thermal storage for drying cocoa beans, Case Stud. Therm. Eng., 2015, vol. 5, pp. 32–40.

    Article  Google Scholar 

  181. El-Sebaii, A.A., Aboul-Enein, S., Ramadan, M.R.I., et al., Experimental investigation of an indirect type natural convection solar dryer, Energy Convers. Manage., 2002, vol. 43, pp. 2251–2266.

    Article  CAS  Google Scholar 

  182. El Khadraoui, A., Bouadila, S., Kooli, S., et al., Thermal behavior of indirect solar dryer: Nocturnal usage of solar air collector with PCM, J. Cleaner Prod., 2017, vol. 148, pp. 37–48.

    Article  Google Scholar 

  183. Jain, D. and Tewari, P., Performance of indirect through pass natural convective solar crop dryer with phase change thermal energy storage, Renewable Energy, 2015, vol. 80, pp. 244–250.

    Article  Google Scholar 

  184. Rabha, D.K., Muthukumar, P., and Somayaji, C., Experimental investigation of thin layer drying kinetics of ghost chilli pepper (Capsicum chinense Jacq.) dried in a forced convection solar tunnel dryer, Renewable Energy, 2017, vol. 105, pp. 583–589.

    Article  Google Scholar 

  185. Madhankumar, S., Viswanathan, K., and Wu, W., Energy, exergy and environmental impact analysis on the novel indirect solar dryer with fins inserted phase change material, Renewable Energy, 2021, vol. 176, pp. 280–294.

    Article  CAS  Google Scholar 

  186. El-Sebaii, A.A., and Shalaby, S.M., Experimental investigation of drying thymus cut leaves in indirect solar dryer with phase change material, J. Sol. Energy, Eng. Trans. ASME, 2017, vol. 139, pp. 1–8.

    Google Scholar 

  187. Zambolin, E. and Del Col, D., Experimental analysis of thermal performance of flat plate and evacuated tube solar collectors in stationary standard and daily conditions, Sol. Energy, 2010, vol. 84, pp. 1382–1396.

    Article  CAS  ADS  Google Scholar 

  188. Maraj, A., Londo, A., Gebremedhin, A., et al., Energy performance analysis of a forced circulation solar water heating system equipped with a heat pipe evacuated tube collector under the Mediterranean climate conditions, Renewable Energy, 2019, vol. 140, pp. 874–883.

    Article  Google Scholar 

  189. Singh, S., Gill, R.S., Hans, V.S., et al., A novel active-mode indirect solar dryer for agricultural products: Experimental evaluation and economic feasibility, Energy, 2021, vol. 222, p. 119956.

    Article  Google Scholar 

  190. Malakar, S., Arora, V.K., and Nema, P.K., Design and performance evaluation of an evacuated tube solar dryer for drying garlic clove, Renewable Energy, 2021, vol. 168, pp. 568–580.

    Article  Google Scholar 

  191. Malakar, S., Alam, M., and Arora, V.K., Evacuated tube solar and sun drying of beetroot slices: Comparative assessment of thermal performance, drying kinetics, and quality analysis, Sol. Energy, 2022, vol. 233, pp. 246–258.

    Article  CAS  ADS  Google Scholar 

  192. Rajagopal, T., Sivakumar, S., and Manivel, R., Development of solar dryer incorporated with evacuated tube collector, 2014, vol. 3, pp. 2655–2658.

  193. Bhaskara Rao, T.S.S. and Murugan, S., Experimental investigation of drying neem (Azadirachta indica) in an evacuated tube solar dryer: Performance, drying kinetics and characterization. Sol. Energy, 2023, vol. 253, pp. 270–284.

    Article  ADS  Google Scholar 

  194. Daghigh, R. and Shafieian, A., An experimental study of a heat pipe evacuated tube solar dryer with heat recovery system. Renewable Energy, 2016, vol. 96, pp. 872–880.

    Article  Google Scholar 

  195. Shringi, V., Kothari, S., and Panwar, N.L., Experimental investigation of drying of garlic clove in solar dryer using phase change material as energy storage, J. Therm. Anal. Calorim., 2014, vol. 118, pp. 533–539.

    Article  CAS  Google Scholar 

  196. Iranmanesh, M., Samimi Akhijahani, H., Barghi Jahromi, M.S., CFD modeling and evaluation the performance of a solar cabinet dryer equipped with evacuated tube solar collector and thermal storage system, Renewable Energy, 2020, vol. 145, pp. 1192–1213.

    Article  Google Scholar 

  197. Sethi, M., Tripathi, R.K., Pattnaik, B., et al., Recent developments in design of evacuated tube solar collectors integrated with thermal energy storage: A review, Mater. Today: Proc., 2022, vol. 52, pp. 1689–1696.

    CAS  Google Scholar 

  198. Malakar, S. and Arora, V.K., Development of phase change material assisted evacuated tube solar dryer: Investigation of thermal profile, drying characteristics, and functional properties of pumpkin slices, Innov. Food Sci. Emerg. Technol., 2022, vol. 80, p. 103109.

    Article  Google Scholar 

  199. Abo-Elfadl, S., Hassan, H., and El-Dosoky, M.F., Study of the performance of double pass solar air heater of a new designed absorber: An experimental work, Sol. Energy, 2020, vol. 198, pp. 479–489.

    Article  ADS  Google Scholar 

  200. Sözen, A., Şirin, C., Khanlari, A., et al., Thermal performance enhancement of tube-type alternative indirect solar dryer with iron mesh modification, Sol. Energy, 2020, vol. 207, pp. 1269–1281.

    Article  ADS  Google Scholar 

  201. Sözen, A., Kazancıoğlu, F.Ş., Tuncer, A.D., et al., Thermal performance improvement of an indirect solar dryer with tube-type absorber packed with aluminum wool, Sol. Energy, 2021, vol. 217, pp. 328–341.

    Article  ADS  Google Scholar 

  202. Dutta, P.P. and Kumar, A., Development and performance study of solar air heater for solar drying applications, Solar Drying Technology, Singapore: Springer, 2017, pp. 579–601.

    Google Scholar 

  203. Ali Etem Gürel, Ümit Ağbulut, Alper Ergün, İlhan Ceylan, Adnan Sözen, Azim Doğuş Tuncer, and Ataollah Khanlari, A detailed investigation of the temperature-controlled fluidized bed solar dryer: A numerical, experimental, and modeling study, Sustainable Energy Technol. Assess., 2022, vol. 49, p. 101703. https://www.sciencedirect.com/science/article/pii/S2213138821007177.

    Google Scholar 

  204. Jebasingh, V.K., Herbert, G.M.J., A review of solar parabolic trough collector, Renewable Sustainable Energy Rev., 2016, vol. 54, pp. 1085–1091.

    Article  Google Scholar 

  205. Chaanaoui, M., Vaudreuil, S., and Bounahmidi, T., Benchmark of concentrating solar power plants: Historical, current and future technical and economic development, Procedia Comput. Sci., 2016, vol. 83, pp. 782–789.

    Article  Google Scholar 

  206. Chaanaoui, M., Ettahi, K., Vaudreuil, S., et al., A finned tube heat exchanger coupled to parabolic trough solar collector for drying application, AIP Conf Proc., 2019, vol. 2126, p. 150001. https://doi.org/10.1063/1.5117657

    Article  CAS  Google Scholar 

  207. Liu, J.T., Li, M., Yu, Q.F., et al., A novel parabolic trough concentrating solar heating for cut tobacco drying system, Int. J. Photoenergy, 2014, vol. 2014, p. 209028. https://doi.org/10.1155/2014/209028

    Article  Google Scholar 

  208. Chaanaoui, M. and Abderafi, S., Prototype of phosphate sludge rotary dryer coupled to a parabolic trough collector solar loop: Integration and experimental analysis, Sol. Energy, 2021, vol. 216, pp. 365–376.

    Article  CAS  ADS  Google Scholar 

  209. Pakouzou, B.M., Ouédraogo, P.W.G., B. Bokoyo, V. de D., et al., Experimentation of the solar dryer with parabolic trough: Drying of okra, Int. J. Adv. Eng. Res. Sci., 2022, vol. 9, pp. 034–041.

  210. Khan, M.A., Rahman, M., Hanif, M., et al., Development of a small scale concentrating parabolic trough solar collector for drying purposes, Eng. Int., 2013, vol. 1, pp. 9–17.

    Article  Google Scholar 

  211. Kalogirou, S.A., Solar thermal collectors and applications, Prog. Energy Combust. Sci., 2004, vol. 30, no. 3, pp. 231–295. https://doi.org/10.1016/j.pecs.2004.02.001

    Article  CAS  Google Scholar 

  212. Adesina, C.A., Studies on the drying tendency of parabolic concentrator dryer on vegetables, roots and tubers, J. Emerg. Trends Eng. Appl. Sci., 2011, vol. 2, pp. 400–404.

    Google Scholar 

  213. Fadhel, A., Charfi, K., Balghouthi, M., et al., Experimental investigation of the solar drying of Tunisian phosphate under different conditions. Renewable Energy, 2018, vol. 116, pp. 762–774.

    Article  CAS  Google Scholar 

  214. Missana, W.P., Park, E., and Kivevele, T.T., Thermal performance analysis of solar dryer integrated with heat energy storage system and a low-cost parabolic solar dish concentrator for food preservation, J. Energy, 2020, vol. 2020, pp. 1–10.

    Article  Google Scholar 

  215. Arkian, A.H., Najafi, G., Gorjian, S., et al., Performance assessment of a solar dryer system using small parabolic dish and alumina/oil nanofluid: Simulation and experimental study, Energies, 2019, vol. 12, pp. 1–23.

    Article  Google Scholar 

  216. Solomon, S., Okomoda, and Egwumah, A.K., Design and performance of a pioneering solar collector using parabolic dish for fish processing, Jordan J. Agric. Sci., 2016, vol. 12, pp. 581–590.

    Article  Google Scholar 

  217. Varghese, J., Rupesh, S., Jithu Augustine, Adithya Nair, and Prajith, Design and analysis of a solar drier with a parabolic shaped dish type collector for drying peanut, IOP Conf. Ser.: Mater. Sci. Eng., 2021, vol. 1132, p. 012046.

  218. Goyal, R.K. and Tiwari, G.N., Performance of a reverse flat plate absorber cabinet dryer: A new concept, Energy Convers. Manage., 1999, vol. 40, pp. 385–392.

    Article  CAS  Google Scholar 

  219. Jain, D., Modeling the performance of the reversed absorber with packed bed thermal storage natural convection solar crop dryer, J. Food Eng., 2007, vol. 78, pp. 637–647.

    Article  Google Scholar 

  220. Khaldi, S., Korti, A.N., and Abboudi, S., Applying CFD for studying the dynamic and thermal behavior of solar chimney drying system with reversed absorber, Int. J. Food Eng., 2017, vol. 13, pp. 1–20.

    Article  Google Scholar 

  221. Khawale, V.R., Thakare, S.B., and Chili, A.R., Modeling and experimental studies on solar crop dryer coupled with reversed absorber type solar air heater, Int. J. Energy Power Eng., 2018, vol. 12, pp. 207–212.

    Google Scholar 

  222. Varghese, J., Rupesh, S., Augustine, J., et al., Design and analysis of a solar drier with a parabolic shaped dish type collector for drying peanut, IOP Conf. Ser. Mater. Sci. Eng., 2021, vol. 1132, p. 012046.

  223. Umayal Sundari, A., Neelamegam, P., and Subramanian, C.V., An experimental study and analysis on solar drying of bitter gourd using an evacuated tube air collector in Thanjavur, Tamil Nadu, India, Conf. Pap. Energy, 2013, vol. 2013, pp. 1–4.

    Google Scholar 

  224. Mahesh, A., Sooriamoorthi, C.E., and Kumaraguru, A.K., Performance study of solar vacuum tubes type dryer, J. Renewable Sustainable Energy, 2012, vol. 4, p. 063121. https://doi.org/10.1063/1.4767934

    Article  Google Scholar 

  225. Ebadi, H., Zare, D., Ahmadi, M., et al., Performance of a hybrid compound parabolic concentrator solar dryer for tomato slices drying, Sol. Energy, 2021, vol. 215, pp. 44–63.

    Article  CAS  ADS  Google Scholar 

  226. Ben, F., Eddhibi, F., Bel, A., et al., Investigation of olive mill sludge treatment using a parabolic trough solar collector, Sol. Energy, 2022, vol. 232, pp. 344–361.

    Article  ADS  Google Scholar 

  227. Kumar, K.R., Dashora, K., Kumar, S., et al., A review of drying technology in tea sector of industrial, non-conventional and renewable energy based drying systems, Appl. Therm. Eng., 2023, vol. 224, p. 120118.

    Article  Google Scholar 

  228. Sharma, A. and Dutta, P.P., Scientific and technological aspects of tea drying and withering: A review, Agric. Eng. Int. CIGR J., 2018, vol. 20, pp. 210–220.

    Google Scholar 

  229. Sharma, A. and Dutta, P.P., Exergy analysis of a solar thermal energy powered tea withering trough, Mater. Today Proc., 2021, vol. 47, pp. 3123–3128.

    Article  Google Scholar 

  230. Sharma, A. and Dutta, P.P., Performance studies of low temperature solar drying of fresh tea leaves (Camellia assamica), Appl. Sol. Energy, 2023, vol. 58, pp. 423–432.

    Article  Google Scholar 

  231. Yahya, M., Ruslan, M.H., Othman, M.Y., et al., Evaluation of energy requirement for drying of green tea using a solar assisted drying system (V-groove solar collector), Proc. 3rd WSEAS Int. Conf. on Renewable Energy Sources, 2009, pp. 298–303.

  232. Sharma, A. and Dutta, P.P., Energy, exergy, economic and environmental (4E) assessments of a tea withering trough coupled with a solar air heater having an absorber plate with Al-can protrusions, Int. J. Ambient Energy, 2022, vol. 43, pp. 8438–8450.

    Article  Google Scholar 

  233. Lingayat, A., Balijepalli, R., and Chandramohan, V.P., Applications of solar energy based drying technologies in various industries—a review, Sol. Energy, 2021, vol. 229, pp. 52–68.

    Article  ADS  Google Scholar 

  234. Sharma, A. and Dutta, P.P., Evaluation of low-temperature drying characteristics of fresh tea leaves (Camellia assamica) in an environmental chamber using mathematical models, Res. Agric. Eng., 2023, vol. 69, pp. 55–64.

    Article  Google Scholar 

  235. Andharia, J.K., Markam, B., Dzhonova, D., et al., A comparative performance analysis of sensible and latent heat based storage in a small-scale solar thermal dryer, J. Energy Storage, 2022, vol. 45, p. 103764.

    Article  Google Scholar 

  236. Sangpradit, K., Study of the solar transmissivity of plastic cladding materials and influence of dust and dirt on greenhouse cultivations, Energy Procedia, 2014, vol. 56, pp. 566–573.

    Article  CAS  Google Scholar 

  237. Singh, R., Saini, R.P., and Saini, J.S., Nusselt number and friction factor correlations for packed bed solar energy storage system having large sized elements of different shapes, Sol. Energy, 2006, vol. 80, pp. 760–771.

    Article  CAS  ADS  Google Scholar 

  238. Bhardwaj, A.K., Kumar, R., Kumar, S., et al., Energy and exergy analyses of drying medicinal herb in a novel forced convection solar dryer integrated with SHSM and PCM, Sustainable Energy Technol. Assess., 2021, vol. 45, p. 101119.

    Article  Google Scholar 

  239. Fudholi, A., Ridwan, A., Yendra, R., et al., Solar drying technology in Indonesia: An overview, Int. J. Power Electron. Drive Syst., 2018, vol. 9, pp. 1804–1813.

    Google Scholar 

  240. Jangde, P.K., Singh, A., and Arjunan, T.V., Efficient solar drying techniques: A review, Environ. Sci. Pollut. Res., 2022, vol. 29, pp. 50970–50983. https://doi.org/10.1007/s11356-021-15792-4

    Article  Google Scholar 

  241. Selvanayaki, S. and Sampathkumar, K., Techno-economic analysis of solar dryers, in Solar Drying Technology, Singapore: Springer, 2017. https://doi.org/10.1007/978-981-10-3833-4_16

    Book  Google Scholar 

  242. Kumar, R., Kumar, D., Gupta, R., et al., Technological development in solar dryers from 2016 to 2021—a review, Renewable Sustainable Energy Rev., 2023, vol. 188, p. 113855.

    Article  Google Scholar 

  243. Janjai, S. and Bala, B.K., Solar drying technology, Food Eng. Rev., 2012, vol. 4, pp. 16–54.

    Article  Google Scholar 

  244. Matavel, C., Hoffmann, H., Rybak, C., et al., Passive solar dryers as sustainable alternatives for drying agricultural produce in sub‑Saharan Africa: Advances and challenges, Discover Sustainability, 2021, vol. 2, p. 40. https://doi.org/10.1007/s43621-021-00049-4

    Article  ADS  Google Scholar 

  245. Aravindh, M.A. and Sreekumar, A., Solar drying—a sustainable way of food processing, in Energy Sustainability Through Green Energy, Green Energy and Technology, New Delhi: Springer, 2015. https://doi.org/10.1007/978-81-322-2337-5

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aruna Kumar Behura.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deepak, C.N., Behura, A.K. Critical Review on Various Solar Drying Technologies: Direct and Indirect Solar Dryer Systems. Appl. Sol. Energy 59, 672–726 (2023). https://doi.org/10.3103/S0003701X2360073X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0003701X2360073X

Keywords:

Navigation