Skip to main content
Log in

Kinetic-mechanistic studies of ruthenium macrocyclic complexes formation as potential donors and scavengers of nitric oxide and correlated species

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

In this paper, the mechanisms of reactions involving complexes with tetraazamacrocyclic (mac) ligands against nitrosyl ligands in an aqueous medium were explored, with emphasis on reactivity to nitric oxide (NO) and analog species, like nitrite ion (NO2). The reactions between [RuCl(OH2)(mac)]2+ with NO and [RuCl(OH)(mac)]2+ with NO2 were performed in an aqueous solution within pH 1 or 7, and the rate constants (k) and the thermodynamic parameters (∆H#, ∆S#) of activation were determined. The reaction between NO and the complex with cyclen is faster than that with the complex with cyclam. However, the reaction of the cyclen complex with NO2 is slower than NO. This research provides detailed reaction kinetics and thermodynamic activation parameters for these interactions for the first time. In addition, the redox processes of coordinated NO and NO2 ligands to ruthenium were evaluated and the electrochemical release of NO from nitrosyl compounds upon electrochemical potential application. Our findings bring significant contributions in elucidating mechanisms related to NO capture both in vitro and in vivo.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Scheme 3
Fig. 5
Fig. 6
Scheme 4

Similar content being viewed by others

References

  1. Wanat A, Schneppensieper T, Stochel G, van Eldik R, Bill E, Wieghardt K (2002) Inorg Chem 41:4–10. https://doi.org/10.1021/ic010628q

    Article  CAS  PubMed  Google Scholar 

  2. Franke A, Roncaroli F, van Eldik R (2007) Eur J Inorg Chem 2007:773–798. https://doi.org/10.1002/ejic.200600921

    Article  CAS  Google Scholar 

  3. Ford PC, Laverman LE (2005) Coord Chem Rev 249:391–403. https://doi.org/10.1016/j.ccr.2004.04.006

    Article  CAS  Google Scholar 

  4. Wolak M, van Eldik R (2002) Coord Chem Rev 230:263–282. https://doi.org/10.1016/s0010-8545(01)00472-6

    Article  CAS  Google Scholar 

  5. Zhao T, Zhang Y, Wang P, Li S, Yang Z, Yang M (2023). Inorg Chem Commun. https://doi.org/10.1016/j.inoche.2023.110418

    Article  Google Scholar 

  6. Truzzi DR, Medeiros NM, Augusto O, Ford PC (2021) Inorg Chem 60:15835–15845. https://doi.org/10.1021/acs.inorgchem.1c00823

    Article  CAS  PubMed  Google Scholar 

  7. Chatterjee D, Chrzanowska M, Katafias A, van Eldik R (2021) J Inorg Biochem 225:111595. https://doi.org/10.1016/j.jinorgbio.2021.111595

    Article  CAS  PubMed  Google Scholar 

  8. Miranda KM, Bu X, Lorkovic I, Ford PC (1997) Inorg Chem 36:4838–4848. https://doi.org/10.1021/ic970065b

    Article  CAS  PubMed  Google Scholar 

  9. Serres RG, Grapperhaus CA, Bothe E, Bill E, Weyhermuller T, Neese F, Wieghardt K (2004) J Am Chem Soc 126:5138–5153. https://doi.org/10.1021/jă45+

    Article  CAS  PubMed  Google Scholar 

  10. Tfouni E, Ferreira KQ, Doro FG, Silva RSD, Rocha ZND (2005) Coord Chem Rev 249:405–418. https://doi.org/10.1016/j.ccr.2004.09.009

    Article  CAS  Google Scholar 

  11. DeLeo MA, Ford PC (2000) Coord Chem Rev 208:47–59. https://doi.org/10.1016/s0010-8545(00)00271-x

    Article  CAS  Google Scholar 

  12. Collman JP, Schneider PW (1966) Inorg Chem 5:1380–1384. https://doi.org/10.1021/ic50042a020

    Article  CAS  Google Scholar 

  13. Bounsall EJ, Koprich SR (1970) Can J Chem 48:1481–1491. https://doi.org/10.1139/v70-243

    Article  CAS  Google Scholar 

  14. Chan P-K, Poon C-K (1976) J Chem Soc. Dalton Trans. https://doi.org/10.1039/dt976000085810.1039/dt9760000858

    Article  Google Scholar 

  15. Ford PC, Lorkovic IM (2002) Chem Rev 102:993–1018. https://doi.org/10.1021/cr0000271

    Article  CAS  PubMed  Google Scholar 

  16. Doro FG, Ferreira KQ, da Rocha ZN, Caramori GF, Gomes AJ, Tfouni E (2016) Coord Chem Rev 306:652–677. https://doi.org/10.1016/j.ccr.2015.03.021

    Article  CAS  Google Scholar 

  17. Lang DR, Davis JA, Lopes LG, Ferro AA, Vasconcellos LC, Franco DW, Tfouni E, Wieraszko A, Clarke MJ (2000) Inorg Chem 39:2294–2300. https://doi.org/10.1021/ic9912979

    Article  CAS  PubMed  Google Scholar 

  18. Cezar JG, Carvalho JRM, Ferreira KQ (2018) Trans Metal Chem 44:253–261. https://doi.org/10.1007/s11243-018-0289-2

    Article  CAS  Google Scholar 

  19. Tobe ML (1968) Inorg Chem 7:1260–1262. https://doi.org/10.1021/ic50064a056

    Article  CAS  Google Scholar 

  20. Poon CK (1973) Coord Chem Rev 10:1–35. https://doi.org/10.1016/s0010-8545(00)80230-1

    Article  CAS  Google Scholar 

  21. Ferreira KQ, Tfouni E (2010) J Bra Chem Soc 21:1349–1358. https://doi.org/10.1590/s0103-50532010000700022

    Article  CAS  Google Scholar 

  22. Ferreira KQ, Schneider JF, Nascente PA, Rodrigues-Filho UP, Tfouni E (2006) J Colloid Interface Sci 300:543–552. https://doi.org/10.1016/j.jcis.2006.03.081

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Tfouni E, Truzzi DR, Tavares A, Gomes AJ, Figueiredo LE, Franco DW (2012) Nitric Oxide 26:38–53. https://doi.org/10.1016/j.niox.2011.11.005

    Article  CAS  PubMed  Google Scholar 

  24. Caramori GF, Kunitz AG, Andriani KF, Doro FG, Frenking G, Tfouni E (2012) Dalton Trans 41:7327–7339. https://doi.org/10.1039/c2dt12094a

    Article  CAS  PubMed  Google Scholar 

  25. Doro FG, Castellano EE, Moraes LA, Eberlin MN, Tfouni E (2008) Inorg Chem 47:4118–4125. https://doi.org/10.1021/ic702078p

    Article  CAS  PubMed  Google Scholar 

  26. Ferreira KQ, Santos FG, da Rocha ZN, Guaratini T, da Silva RS, Tfouni E (2004) Inorg Chem Commun 7:204–208. https://doi.org/10.1016/j.inoche.2003.10.017

    Article  CAS  Google Scholar 

  27. Ferreira KQ, Cardoso LN, Nikolaou S, da Rocha ZN, da Silva RS, Tfouni E (2005) Inorg Chem 44:5544–5546. https://doi.org/10.1021/ic050006v

    Article  CAS  PubMed  Google Scholar 

  28. Ford PC, Miranda KM (2020) Nitric Oxide 103:31–46. https://doi.org/10.1016/j.niox.2020.07.004

    Article  CAS  PubMed  Google Scholar 

  29. Hauser C, Glaser T, Bill E, Weyhermüller T, Wieghardt K (2000) J Am Chem Soc 122:4352–4365. https://doi.org/10.1021/ja994161i

    Article  CAS  Google Scholar 

  30. Ferreira KQ, Tfouni E (2010) J Braz Chem Soc 21:1349–1358. https://doi.org/10.1590/s0103-50532010000700022

    Article  CAS  Google Scholar 

  31. Armarego WLF (2018) Purification of laboratory chemicals, Elsevier

  32. Evans IP, Spencer A, Wilkinson G (1973). Dalton Trans. https://doi.org/10.1039/dt973000020410.1039/dt9730000204

    Article  Google Scholar 

  33. Diamantis AA, Dubrawski JV (2002) Inorg Chem 20:1142–1150. https://doi.org/10.1021/ic50218a037

    Article  Google Scholar 

  34. Ferreira KQ, Lucchesi AM, da Rocha ZN, da Silva RS (2002) Inorg Chim Acta 328:147–151. https://doi.org/10.1016/s0020-1693(01)00725-3

    Article  CAS  Google Scholar 

  35. Berben LA, Faia MC, Crawford NR, Long JR (2006) Inorg Chem 45:6378–6386. https://doi.org/10.1021/ic060570l

    Article  CAS  PubMed  Google Scholar 

  36. De Candia AG, Marcolongo JP, Slep LD (2007) Polyhedron 26:4719–4730. https://doi.org/10.1016/j.poly.2007.04.038

    Article  CAS  Google Scholar 

  37. Lau VC, Berben LA, Long JR (2002) J Am Chem Soc 124:9042–9043. https://doi.org/10.1021/ja027114q

    Article  CAS  PubMed  Google Scholar 

  38. Nakamoto K (1986) Infrared and raman spectra of inorganic and coordination compounds Jonh Wiley, Hoboken

  39. Batista AA, Pereira C, Queiroz SL, de Oliveira LAA, Santos RHDA, Gambardella MTDP (1997) Polyhedron 16:927–931. https://doi.org/10.1016/s0277-5387(96)00350-6

    Article  CAS  Google Scholar 

  40. Pavia GMLDL, Kriz GS, Vyvyan JR (2015) Introdução à espectroscopia. Cengage Learning

  41. da Silva CDS, Ferreira KQ, Meira CS, Soares MBP, Moraes RDA, Araujo FA, Flavia Silva D, de Sa DS (2023) Dalton Trans 52:17176–17184. https://doi.org/10.1039/d3dt02760k

    Article  CAS  PubMed  Google Scholar 

  42. Golfeto CC, Von Poelhsitz G, Selistre-de-Araujo HS, de Araujo MP, Ellena J, Castellano EE, Lopes LG, Moreira IS, Batista AA (2010) J Inorg Biochem 104:489–495. https://doi.org/10.1016/j.jinorgbio.2009.12.015

    Article  CAS  PubMed  Google Scholar 

  43. da Rocha ZN, Marchesi MS, Molin JC, Lunardi CN, Miranda KM, Bendhack LM, Ford PC, da Silva RS (2008). Dalton Trans. https://doi.org/10.1039/b803441a:4282-428710.1039/b803441a

    Article  PubMed  Google Scholar 

  44. de Oliveira SF, Ferreira KQ, Bonaventura D, Bendhack LM, Tedesco AC, de Machado SP, Tfouni E, da Silva RS (2007) J Inorg Biochem 101:313–320. https://doi.org/10.1016/j.jinorgbio.2006.10.008

    Article  CAS  PubMed  Google Scholar 

  45. Vidal RDS, Doro FG, Ferreira KQ, da Rocha ZN, Castellano EE, Nikolaou S, Tfouni E (2012) Inorg Chem Comm 15:93–96. https://doi.org/10.1016/j.inoche.2011.09.046

    Article  CAS  Google Scholar 

  46. Najafpour MM, Safdari R, Ebrahimi F, Rafighi P, Bagheri R (2016) Dalton Trans 45:2618–2623. https://doi.org/10.1039/c5dt04467g

    Article  CAS  PubMed  Google Scholar 

  47. Jorge AR, Chernobryva M, Rigby SE, Watkinson M, Resmini M (2016) Chemistry 22:3764–3774. https://doi.org/10.1002/chem.201503946

    Article  CAS  PubMed  Google Scholar 

  48. Czap A, van Eldik R (2003) Dalton Trans 4:665–671. https://doi.org/10.1039/b210256k

    Article  CAS  Google Scholar 

  49. Wanat A, Schneppensieper T, Karocki A, Stochel G, Eldik RV (2002) Dalton Trans 6:941–950. https://doi.org/10.1039/b108236c

    Article  CAS  Google Scholar 

  50. Freedman DA, Kruger S, Roosa C, Wymer C (2006) Inorg Chem 45:9558–9568. https://doi.org/10.1021/ic061039t

    Article  CAS  PubMed  Google Scholar 

  51. Taube H (1952) Chem Rev 50:69–126. https://doi.org/10.1021/cr60155a003

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Brazilian agencies CNPq and CAPES for their financial support.

Author information

Authors and Affiliations

Authors

Contributions

JGC, TMMM and KQF wrote the main manuscript text and TMMM prepared all figures. JGC and KQF performed the kinetic experiments. All authors reviewed the manuscript

Corresponding author

Correspondence to Kleber Queiroz Ferreira.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1339 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cezar, J.G., Milhazes, T.M.M. & Ferreira, K.Q. Kinetic-mechanistic studies of ruthenium macrocyclic complexes formation as potential donors and scavengers of nitric oxide and correlated species. Transit Met Chem (2024). https://doi.org/10.1007/s11243-024-00575-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11243-024-00575-w

Navigation