Skip to main content
Log in

Evaluation of microstructure and toughness of SAW steel weld metals with optimum Al/O ratio

  • Research Paper
  • Published:
Welding in the World Aims and scope Submit manuscript

Abstract

A study was made to understand the possible effect of the Al/O ratio on the Charpy V-notch impact properties of submerged arc weld metals within the optimum range of Al/O ratio previously reported to be 0.45–0.75. To vary the Al/O ratio of weld metals in such a narrow range, two base plates different in aluminum content were selected, and a bead-in-groove weld was made on each plate using the same welding condition. From the chemical compositions obtained, the Al/O ratio of each plate was determined to be 0.47 and 0.75. Charpy impact tests showed that the ductile–brittle transition temperature (DBTT) of a low Al/O ratio was about 25 °C lower than that of a high Al/O ratio. The improvement in toughness is concluded to be attributable to the microstructural refinement that can be quantified by two different parameters: AF content increased from 70 to 79% and grain size decreased from 8 to 6 μm. These results also indicated that even a slight variation in aluminum content of base plates could cause a marked variation in weld microstructure and toughness. In addition, the inclusions in the weld of low Al/O ratio were confirmed to be covered by the TiO layer, but no manganese-depleted zone (MDZ) was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Abson DJ, Pargeter RJ (1986) Factors influencing as-deposited strength, microstructure, and toughness of manual metal arc welds suitable for C-Mn steel fabrication. Int Met Review 31(4):141–194

    CAS  Google Scholar 

  2. Sarma DS, Karasev AV, Jönsson PG (2009) On the role of non-metallic inclusions in the nucleation of acicular ferrite in steels. ISIJ Int 49(7):1063–1074. https://doi.org/10.2355/isijinternational.49.1063

    Article  CAS  Google Scholar 

  3. Loder D, Michelic SK, Bernhard C (2017) Acicular ferrite formation and its influencing factors—a review. J Mater Sci Res 6(1):24–43. https://doi.org/10.5539/jmsr.v6n1p24

    Article  CAS  Google Scholar 

  4. Xuan C, Mu W (2022) New insights of heterogeneous nucleation and anisotropic growth of acicular ferrite on non-metallic inclusion. Mater Des 221(9):110892. https://doi.org/10.1016/j.matdes.2022.110892

    Article  CAS  Google Scholar 

  5. Yamada T, Terasaki H, Komizo Y (2009) Relation between inclusion surface and acicular ferrite in low carbon low alloy steel weld. ISIJ Int 49(7):1059–1062. https://doi.org/10.2355/isijinternational.49.1059

    Article  CAS  Google Scholar 

  6. Seo JS, Lee C, Kin HJ (2013) Influence of oxygen content on microstructure and inclusion characteristics of bainitic weld metals. ISIJ Int 53(2):279–285. https://doi.org/10.2355/isijinternational.53.279

    Article  CAS  Google Scholar 

  7. Horii Y, Ichikawa K, Ohkita S, Ohkita S, Funaki S, Yurioka N (1995) Chemical composition and crystal structure of oxide inclusions promoting acicular ferrite transformation in low alloy submerged arc weld metal. Quarterly J Jap Weld Soc 13(4):500–507. https://doi.org/10.2207/qjjws.13.500

    Article  CAS  Google Scholar 

  8. Homma R, Shinohara Y, Kadoi K, Inoue H (2021) Effect of S and Si on the formation of intragranular ferrite and inclusions in ultra-low oxygen weld metal of low carbon steel. ISIJ Int 61(1):309–316. https://doi.org/10.2355/isijinternational.ISIJINT-2020-112

    Article  CAS  Google Scholar 

  9. Mills AR, Thewlis G, Whiteman JA (1987) Nature of inclusions in steel weld metals and their influence on formation of acicular ferrite. Mater Sci Tech 3(12):1051–1061

    Article  CAS  Google Scholar 

  10. Koseki T, Ohkita S, Yurioka N (1997) Thermodynamic study of inclusion formation in low alloy steel weld metals. Sci Tech Weld Join 2(2):65–69. https://doi.org/10.1179/stw.1997.2.2.65

    Article  CAS  Google Scholar 

  11. Ito Y, Nakanishi M (1976) Study on Charpy impact properties of weld metal with submerged arc welding. Sumitomo Search 15:42–61

    CAS  Google Scholar 

  12. Evan GM (1992) The effect of titanium in SMA C-Mn steel multipass deposits. Weld J 71(12):447s–454s

    ADS  Google Scholar 

  13. Evan GM (1993) Effect of titanium in manganese-containing SMA weld deposit. Weld J 72(3):123s–133s

    Google Scholar 

  14. Evan GM (1995) Microstructure and properties of ferritic steel welds containing Al ad Ti. Weld J 74(8):249s–261s

    Google Scholar 

  15. Evan GM (1996) Microstructure and properties of ferritic steel welds containing Ti ad B. Weld J 75(8):251s–260s

    Google Scholar 

  16. Johnson MQ, Evan GM, Edwards GR (1995) The influence of titanium additions and interpass temperature on the microstructures and mechanical properties of high strength SMA weld metals. ISIJ Int 35(10):1222–1231. https://doi.org/10.2355/isijinternational.35.1222

    Article  CAS  Google Scholar 

  17. Seo K, Kim K-h, Kim HJ, Ryoo H, Evans GM, Lee C (2020) Microstructural and inclusion characteristics of C-Mn steel welds at a minimal level of titanium. Met Mater Int 26(8):1226–1234. https://doi.org/10.1007/s12540-019-00390-4

    Article  CAS  Google Scholar 

  18. Horii Y (1995) Effect of chemical composition on strength and toughness of welds made by large heat input submerged arc welding, Doctoral thesis, Osaka University, Osaka, Japan. http://hdl.handle.net/11094/39436. Accessed 03-03-2024

  19. Yamada T, Terasaki H, Komizo Y (2007) Microstructural evolution in low carbon steel Ti-B weld metals with several Al levels quarterly. J Jap Weld Soc 25(4):514–518. https://doi.org/10.2207/qjjws.25.514

    Article  CAS  Google Scholar 

  20. Terashima H, Hart PHM (1983) Proc. Int Conf on ‘Effect of residual impurity and micro-alloying elements on weldability and weld properties’, TWI, London, Paper 27

  21. Yamada T, Terasaki H, Komizo Y (2008) Microscopic observation of inclusions contributing to formation of acicular ferrite in steel weld metal. Sci Tech Weld Join 13(2):118–125. https://doi.org/10.1179/174329308X271797

    Article  CAS  Google Scholar 

  22. Takada A, Terasaki H, Komizo Y (2013) Effect of aluminum content on acicular ferrite formation in low carbon steel weld metals. Sci Tech Weld Join 18(2):91–97. https://doi.org/10.1179/1362171812Y.0000000086

    Article  CAS  Google Scholar 

  23. Fujiyama N, Shigesato G (2021) Effect of Mn and Al on acicular ferrite formation in SAW weld metal. ISIJ Int 61(5):1614–1622. https://doi.org/10.2355/isijinternational.ISIJINT-2020-407

    Article  CAS  Google Scholar 

  24. Milani JM, Saeid T (2020) Acicular ferrite nucleation and growth in API5L-X65 steel submerged arc welded joints. Mat Sci Tech 36(13):1398–1406. https://doi.org/10.1080/02670836.2020.1783774

    Article  CAS  Google Scholar 

  25. Seo K, Ryoo H, Kim HJ, Yoon JG, Lee C (2022) Nature of nonmetallic inclusions in electrogas weld metal. Weld World 66:379–390

    Article  CAS  Google Scholar 

  26. Takada A, Terasaki H, Komizo Y (2014) Role of inclusions for formation of acicular ferrite in low carbon steel weld deposits. IIW Doc II-1886–14, IIW, Italy

  27. Byun J-S, Cho YW, Chung SH, Shim J-H, Lee DN (1999) Nucleation of intragranular ferrite at Ti2O3 particle in low carbon steel. Acta Meter 47(9):1751–1760

    Google Scholar 

  28. Byun J-S, Shim J-H, Cho YW, Lee DN (2003) Non-metallic inclusion and intragranular nucleation of ferrite in Ti-killed steel. Acta Meter 51:1593–1606

    Article  ADS  CAS  Google Scholar 

  29. Li Y, Wan XL, Cheng L, Wu KM (2016) Effect of oxides on nucleation of ferrite: first principle modelling and experimental approach. Mat Sci Tech 32(1):88–93. https://doi.org/10.1179/1743284715Y.0000000102

    Article  CAS  Google Scholar 

  30. Seo K, Kim Y-M, Kim HJ, Lee C (2015) Characterization of inclusions formed in Ti-containing steel weld metals. ISIJ Int 55(8):1730–1738. https://doi.org/10.2355/isijinternational.ISIJINT-2014-800

    Article  CAS  Google Scholar 

  31. Seo K, Kim Y-M, Evans GM (2015) Formation of Mn-depleted zone in Ti-containing weld metals. Weld World 59(3):373–380. https://doi.org/10.1007/s40194-014-0207-y

    Article  CAS  Google Scholar 

  32. Kang Y, Han K, Park JH, Lee C (2015) Variation in the chemical driving force for intergranular nucleation in the multi-pass weld metal of Ti-containing high-strength low-alloy steel. Met Mater Trans A 46A(8):2015–3581

    Google Scholar 

  33. Homma R, Shigesato G, Fujioka M, Kadoi K, Inoue H (2022) Mn depletion behavior at oxide/matrix interface in low oxygen weld metal of low carbon steel. Tetsu-to-Hagane 108(3):211–223. https://doi.org/10.2355/tetsutohagane.TETSU-2021-087

    Article  Google Scholar 

  34. Wang B, Liu X, WANG G, (2018) Inclusion characteristics and acicular ferrite nucleation in Ti-containing weld metals of X80 pipeline steel. Met Mater Trans A 49A(6):2124–2138. https://doi.org/10.1007/s11661-018-4570-y

    Article  CAS  Google Scholar 

  35. Homma R, Kadoi K, Inoue H (2021) Effects of Ti and Al on the formation of intragranular ferrites in the ultra-low-oxygen Si-Mn weld metals of low-carbon steel. Mater Today Commun 29:102963. https://doi.org/10.1016/j.mtcomm.2021.102963

    Article  CAS  Google Scholar 

  36. Nakayama K, Kisaya Y, Kimura F, Terasaki H (2020) A study on mechanism of acicular ferrite formation in GMA weld metals. Quarterly J Jap Weld Soc 38(4):229–233. https://doi.org/10.2207/qjjws.38.229

    Article  Google Scholar 

  37. Rule Requirements for Materials and Welding_Part 2 (2019), American Bureau Shipping, USA

  38. ASTM E23–23a, Standard test methods for notched bar impact testing of metallic materials, ASTM Int, PA, USA, https://doi.org/10.1520/E0023-23A

  39. Hunt AC, Kluken AO, Edward GR (1994) Heat input and dilution effects in micro-alloyed steel weld metal. Weld J 73(1):9s–15s

    Google Scholar 

  40. Hidaka T, Suenaga K, Okazaki Y, Ishida H (2009) Influence of oxides on microstructure and notch toughness of weld metal with flux-cored wires for high strength steel quarterly. J Jap Weld Soc 27(2):154s–157s. https://doi.org/10.2207/qjjws.27.154s

    Article  CAS  Google Scholar 

  41. Jia X, Li H, Yang Y, Hao Y, Wang B, Wang B (2024) Evolution of complex oxide inclusions during the smelting process of oxide metallurgical steel and their effect on acicular ferrite nucleation. Met Mater Trans A 55A(3):724–753. https://doi.org/10.1007/s11661-023-0726608

    Article  Google Scholar 

  42. Yamamoto K, Hasegawa T, Katamura J (1996) Effect of boron on intra-granular ferrite formation in Ti-oxide bearing steels. ISIJ Int 36(1):80–86. https://doi.org/10.2355/isijinternational.36.80

    Article  CAS  Google Scholar 

  43. Seo JS, Seo K, Kim HJ, Lee C (2014) Effect of titanium content on weld microstructure and mechanical properties of bainitic GMA welds. Weld World 58:893–901

    Article  CAS  Google Scholar 

  44. Pargeter RJ, Dolby RE (1980) A scheme for the quantitative description of ferritic weld microstructures, IIW Doc. IXJ-29–80, IIW, Italy

  45. Davey TG, Widgery DJ (1976) A technique for the characterization of weld metal microstructure, IIW Doc. II-389–76, IIW, Italy

  46. Farrar RA, Zhang Z (1995) Aspect ratios and morphology of acicular ferrite in C-Mn-Ni weld metals. Mater Sci Tech 11(8):759–764

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Korea Institute of Energy Technology Evaluation and Planning(KETEP) grant funded by the Korea government (MOTIE) (20206510100030, Development of Repair Technology for Class 2, 3 Large Bore Piping in Operating Nuclear Power Plant).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hee Jin Kim.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Recommended for publication by Commission IX - Behaviour of Metals Subjected to Welding

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seo, K., Kang, Y., Kim, H.J. et al. Evaluation of microstructure and toughness of SAW steel weld metals with optimum Al/O ratio. Weld World (2024). https://doi.org/10.1007/s40194-024-01749-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40194-024-01749-x

Keywords

Navigation