Skip to main content
Log in

Numerical Approximation of the Solution of an Obstacle Problem Modelling the Displacement of Elliptic Membrane Shells via the Penalty Method

  • Published:
Applied Mathematics & Optimization Submit manuscript

Abstract

In this paper we establish the convergence of a numerical scheme based, on the Finite Element Method, for a time-independent problem modelling the deformation of a linearly elastic elliptic membrane shell subjected to remaining confined in a half space. Instead of approximating the original variational inequalities governing this obstacle problem, we approximate the penalized version of the problem under consideration. A suitable coupling between the penalty parameter and the mesh size will then lead us to establish the convergence of the solution of the discrete penalized problem to the solution of the original variational inequalities. We also establish the convergence of the Brezis–Sibony scheme for the problem under consideration. Thanks to this iterative method, we can approximate the solution of the discrete penalized problem without having to resort to nonlinear optimization tools. Finally, we present numerical simulations validating our new theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Agmon, S., Douglis, A., Nirenberg, L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I. Commun. Pure Appl. Math. 12, 623–727 (1959)

    MathSciNet  Google Scholar 

  2. Agmon, S., Douglis, A., Nirenberg, L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II. Commun. Pure Appl. Math. 17, 35–92 (1964)

    MathSciNet  Google Scholar 

  3. Ahrens, J., Geveci, B., Law, C. (eds.): ParaView: An End-User Tool for Large Data Visualization. Elsevier, Berlin (2005)

    Google Scholar 

  4. Alexandrescu, O.: Théorème d’existence pour le modèle bidimensionnel de coque non linéaire de W. T. Koiter. C. R. Acad. Sci. Paris Sér. I Math. 319, 899–902 (1994)

    MathSciNet  Google Scholar 

  5. Brenner, S., Scott, L.R.: The Mathematical Theory of Finite Element Methods, 3rd edn. Springer, New York (2008)

    Google Scholar 

  6. Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, New York (2011)

    Google Scholar 

  7. Brezis, H., Sibony, M.: Méthodes d’approximation et d’itération pour les opérateurs monotones. Arch. Ration. Mech. Anal. 28, 59–82 (1967/1968)

  8. Brezis, H., Stampacchia, G.: Sur la régularité de la solution d’inéquations elliptiques. Bull. Soc. Math. France 96, 153–180 (1968)

    MathSciNet  Google Scholar 

  9. Caffarelli, L.A., Friedman, A.: The obstacle problem for the biharmonic operator. Ann. Scuola Norm. Sup. Pisa CI Sci. 6, 151–184 (1979)

    MathSciNet  Google Scholar 

  10. Caffarelli, L.A., Friedman, A., Torelli, A.: The two-obstacle problem for the biharmonic operator. Pac. J. Math. 103, 325–335 (1982)

    MathSciNet  Google Scholar 

  11. Chapelle, D., Bathe, K.-J.: The Finite Element Analysis of Shells—Fundamentals, 2nd edn. Springer, Berlin (2011)

    Google Scholar 

  12. Chen, Z., Glowinski, R., Li, K.: Current Trends in Scientific Computing: ICM 2002 Beijing Satellite Conference on Scientific Computing, August 15–18, 2002, Xi’an Jiaotong University, Xi’an, China. American Mathematical Society, Providence (2003)

  13. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)

    Google Scholar 

  14. Ciarlet, P.G.: Mathematical Elasticity. Vol. I: Three-Dimensional Elasticity. North-Holland, Amsterdam (1988)

    Google Scholar 

  15. Ciarlet, P.G.: Mathematical Elasticity. Vol. III: Theory of Shells. North-Holland, Amsterdam (2000)

    Google Scholar 

  16. Ciarlet, P.G.: An Introduction to Differential Geometry with Applications to Elasticity. Springer, Dordrecht (2005)

    Google Scholar 

  17. Ciarlet, P.G.: Linear and Nonlinear Functional Analysis with Applications. Society for Industrial and Applied Mathematics, Philadelphia (2013)

    Google Scholar 

  18. Ciarlet, P.G., Destuynder, P.: A justification of the two-dimensional linear plate model. J. Mécanique 18, 315–344 (1979)

    MathSciNet  Google Scholar 

  19. Ciarlet, P.G., Lods, V.: On the ellipticity of linear membrane shell equations. J. Math. Pures Appl. 75, 107–124 (1996)

    MathSciNet  Google Scholar 

  20. Ciarlet, P.G., Lods, V.: Asymptotic analysis of linearly elastic shells. I. Justification of membrane shell equations. Arch. Ration. Mech. Anal. 136(2), 119–161 (1996)

    MathSciNet  Google Scholar 

  21. Ciarlet, P.G., Piersanti, P.: Obstacle problems for Koiter’s shells. Math. Mech. Solids 24, 3061–3079 (2019)

    MathSciNet  Google Scholar 

  22. Ciarlet, P.G., Piersanti, P.: A confinement problem for a linearly elastic Koiter’s shell. C.R. Acad. Sci. Paris Sér. I 357, 221–230 (2019)

    MathSciNet  Google Scholar 

  23. Ciarlet, P.G., Sanchez-Palencia, E.: An existence and uniqueness theorem for the two-dimensional linear membrane shell equations. J. Math. Pures Appl. 75, 51–67 (1996)

    MathSciNet  Google Scholar 

  24. Ciarlet, P.G., Mardare, C., Piersanti, P.: Un problème de confinement pour une coque membranaire linéairement élastique de type elliptique. C. R. Math. Acad. Sci. Paris 356(10), 1040–1051 (2018)

    MathSciNet  Google Scholar 

  25. Ciarlet, P.G., Mardare, C., Piersanti, P.: An obstacle problem for elliptic membrane shells. Math. Mech. Solids 24(5), 1503–1529 (2019)

    MathSciNet  Google Scholar 

  26. Duan, W., Piersanti, P., Shen, X., Yang, Q.: Numerical corroboration of Koiter’s model for all the main types of linearly elastic shells in the static case. Math. Mech. Solids

  27. Eggleston, H.G.: Convexity. Cambridge Tracts in Mathematics and Mathematical Physics, No. 47. Cambridge University Press, New York (1958)

    Google Scholar 

  28. Evans, L.C.: Part. Differ. Equ., 2nd edn. American Mathematical Society, Providence (2010)

    Google Scholar 

  29. Falk, R.S.: Error estimates for the approximation of a class of variational inequalities. Math. Comput. 28, 963–971 (1974)

    MathSciNet  Google Scholar 

  30. Frehse, J.: Zum Differenzierbarkeitsproblem bei Variationsungleichungen höherer Ordnung. Abh. Math. Sem. Univ. Hamburg 36, 140–149 (1971)

    MathSciNet  Google Scholar 

  31. Frehse, J.: On the regularity of the solution of the biharmonic variational inequality. Manuscr. Math. 9, 91–103 (1973)

    MathSciNet  Google Scholar 

  32. Ganesan, S., Tobiska, L.: Finite Elements: Theory and Algorithms. Cambridge University Press, Cambridge (2017)

    Google Scholar 

  33. Genevey, K.: A regularity result for a linear membrane shell problem. Math. Modell. Numer. 30, 467–488 (1996)

    MathSciNet  Google Scholar 

  34. Geymonat, G.: Sui problemi ai limiti per i sistemi lineari ellittici. In: Atti del Convegno su le Equazioni alle Derivate Parziali (Nervi, 1965), pp. 60–65. Edizioni Cremonese, Rome (1966)

  35. Grisvard, P.: Elliptic problems in nonsmooth domains, volume 69 of Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2011. Reprint of the 1985 original [MR0775683], With a foreword by Susanne C. Brenner

  36. Hörmander, L.: The analysis of Linear Partial Differential Operators. I, Volume 256 of Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Distribution Theory and Fourier Analysis, 2edn. Springer, Berlin (1990)

  37. Langtangen, H.P., Logg, A.: Solving PDEs in Python, Volume 3 of Simula SpringerBriefs on Computing. Springer, Cham (2016)

  38. Léger, A., Miara, B.: Mathematical justification of the obstacle problem in the case of a shallow shell. J. Elast. 90, 241–257 (2008)

    MathSciNet  Google Scholar 

  39. Léger, A., Miara, B.: Erratum to: Mathematical justification of the obstacle problem in the case of a shallow shell. J. Elast. 98, 115–116 (2010)

    Google Scholar 

  40. Léger, A., Miara, B.: A linearly elastic shell over an obstacle: the flexural case. J. Elast. 131, 19–38 (2018)

    MathSciNet  Google Scholar 

  41. Li, K., Huang, A., Huang, Q.: Finite Element Method and Its Applications. Science Press, Beijing (2015)

    Google Scholar 

  42. Lions, J.-L.: Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod; Gauthier-Villars, Paris (1969)

    Google Scholar 

  43. Mezabia, M.E., Chacha, D.A., Bensayah, A.: Modelling of frictionless Signorini problem for a linear elastic membrane shell. Appl. Anal. 101(6), 2295–2315 (2022)

    MathSciNet  Google Scholar 

  44. Nečas, J.: Direct Methods in the Theory of Elliptic Equations. Springer, Heidelberg (2012)

    Google Scholar 

  45. Piersanti, P.: On the improved interior regularity of the solution of a second order elliptic boundary value problem modelling the displacement of a linearly elastic elliptic membrane shell subject to an obstacle. Discrete Contin. Dyn. Syst. 42(2), 1011–1037 (2022)

    MathSciNet  Google Scholar 

  46. Piersanti, P.: Asymptotic analysis of linearly elastic elliptic membrane shells subjected to an obstacle. J. Differ. Equ. 320, 114–142 (2022)

    MathSciNet  Google Scholar 

  47. Piersanti, P.: On the improved interior regularity of the solution of a fourth order elliptic problem modelling the displacement of a linearly elastic shallow shell subject to an obstacle. Asymptot. Anal. 127(1–2), 35–55 (2022)

    MathSciNet  Google Scholar 

  48. Piersanti, P.: Asymptotic analysis of linearly elastic flexural shells subjected to an obstacle in absence of friction. J. Nonlinear Sci. 33(4), 39 (2023)

    MathSciNet  Google Scholar 

  49. Piersanti, P., Shen, X.: Numerical methods for static shallow shells lying over an obstacle. Numer. Algorithms 1, 623–652 (2020)

    MathSciNet  Google Scholar 

  50. Piersanti, P., Temam, R.: On the dynamics of grounded shallow ice sheets. Modelling and analysis. Adv. Nonlinear Anal. 12(1), 40 (2023)

    Google Scholar 

  51. Piersanti, R., Africa, P.C., Fedele, M., Vergara, C., Dedè, L., Corno, A.F., Quarteroni, A.: Modeling cardiac muscle fibers in ventricular and atrial electrophysiology simulations. Comput. Methods Appl. Mech. Eng. 373, 113468 (2021)

    MathSciNet  Google Scholar 

  52. Piersanti, P., White, K., Dragnea, B., Temam, R.: Modelling virus contact mechanics under atomic force imaging conditions. Appl. Anal. 101(11), 3947–3957 (2022)

    MathSciNet  Google Scholar 

  53. Piersanti, P., White, K., Dragnea, B., Temam, R.: A three-dimensional discrete model for approximating the deformation of a viral capsid subjected to lying over a flat surface. Anal. Appl. 20(6), 1159–1191 (2022)

    MathSciNet  Google Scholar 

  54. Regazzoni, F., Dedè, L., Quarteroni, A.: Active force generation in cardiac muscle cells: mathematical modeling and numerical simulation of the actin-myosin interaction. Vietnam J. Math. 49(1), 87–118 (2021)

    MathSciNet  Google Scholar 

  55. Rodríguez-Arós, A.: Mathematical justification of the obstacle problem for elastic elliptic membrane shells. Appl. Anal. 97, 1261–1280 (2018)

    MathSciNet  Google Scholar 

  56. Scholz, R.: Numerical solution of the obstacle problem by the penalty method. Computing 32(4), 297–306 (1984)

    MathSciNet  Google Scholar 

  57. Stampacchia, G.: Èquations elliptiques du second ordre à coefficients discontinus, volume 1965 of Séminaire de Mathématiques Supérieures, No. 16 (Été. Les Presses de l’Université de Montréal, Montreal (1966)

  58. Sun, W., Yuan, Y.-X.: Optimization Theory and Methods, Volume 1 of Springer Optimization and Its Applications. Springer, New York (2006)

    Google Scholar 

  59. Zingaro, A., Dedè, L., Menghini, F., Quarteroni, A.: Hemodynamics of the heart’s left atrium based on a variational multiscale-LES numerical method. Eur. J. Mech. B Fluids 89, 380–400 (2021)

    MathSciNet  Google Scholar 

Download references

Funding

A.M. and P.P. were partly supported by the Research Fund of Indiana University and by the National Science Foundation under Grant Number DMS-2051032.

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed to the realisation of this manuscript in equal manner.

Corresponding author

Correspondence to Paolo Piersanti.

Ethics declarations

Competing Interests

All authors certify that they have no affiliations with or involvement in any organization or entity with any competing interests in the subject matter or materials discussed in this manuscript.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meixner, A., Piersanti, P. Numerical Approximation of the Solution of an Obstacle Problem Modelling the Displacement of Elliptic Membrane Shells via the Penalty Method. Appl Math Optim 89, 45 (2024). https://doi.org/10.1007/s00245-024-10112-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00245-024-10112-x

Keywords

Navigation