Skip to main content
Log in

Enhancing of methyl orange oxidation using nanotube sensor: analytical application in water

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

The electrochemical properties of poly(l-asparagine) modified carbon nanotube paste electrode (PAMCNPE) were investigated for precise detection of methyl orange. Asparagine was electrochemical polymerized and deposited onto the carbon nanotube paste surface to develop the modified electrode, and comparing to the bare carbon nanotube paste electrode. Cyclic voltammetry measurements of the modified electrode at pH 7 in a 0.2 M phosphate buffer saline showed excellent oxidizing activity towards methyl orange. Various factors were studied, including the ionic strength of the buffer. The external morphology and conversion of the perception material were studied using field emission scanning electron microscopy and electrochemical impedance spectroscopy, respectively. High sensitivity and selectivity for detecting methyl orange were also achieved by optimizing experimental conditions such of pH, concentration variation, and scan rate. The concentration range spanned from 0.2 to 9.0 µM, with the lower limit of detection at 1.368 × 10–7 M and the quantification limit of 4.562 × 10–7 M, indicating its excellent analytical performance. Additionally, the PAMCNPE shows good stability, reproducibility, and repeatability. Its remarkable recovery in real samples underscores its potential for practical applications in environmental and clinical analysis.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data that support the fndings of this study are available from the corresponding author upon reasonable request.

References

  1. Doğan M, Özdemir Y, Alkan M (2007) Dyes Pigm 75:701

    Article  Google Scholar 

  2. Garg VK, Amita M, Kumar R, Gupta R (2004) Dyes Pigm 63:243

    Article  CAS  Google Scholar 

  3. Ai L, Zhang C, Meng L (2011) J Chem Eng Data 56:4217

    Article  CAS  Google Scholar 

  4. Pearce CI, Lloyd JR, Guthrie JT (2003) Dyes Pigm 58:179

    Article  CAS  Google Scholar 

  5. Giribabu K, Haldorai Y, Rethinasabapathy M, Jang SC, Suresh R, Cho WS, Han YK, Roh C, Huh YS, Narayanan V (2017) Curr Appl Phys 17:1114

    Article  Google Scholar 

  6. Belloli R, Barletta B, Bolzacchini E, Meinardi S, Orlandi M, Rindone B (1999) J Chromatogr A 846:277

    Article  CAS  Google Scholar 

  7. Zhao Q, Gan Z, Zhuang Q (2002) Electroanalysis 14:1609

    Article  CAS  Google Scholar 

  8. Kanthappa B, Manjunatha JG, Hareesha N, Aljuwayid AM, Mohamed AH, Mika S (2024). J Iran Chem Soc. https://doi.org/10.1007/s13738-023-02911-w

    Article  Google Scholar 

  9. Beitollahi H, Sheikhshoaie I (2012) Int J Electrochem Sci 7:7684

    Article  CAS  Google Scholar 

  10. Rajendrachari S, Basavegowda N, Vinaykumar R, Narsimhachary D, Somu P, Lee MJ (2023) Inorg Chem Commun 155:111010

    Article  CAS  Google Scholar 

  11. Somayeh T, Mohammad Ali T, Beitollahi H (2013) J Electroanal Chem. 704:137

    Article  Google Scholar 

  12. Rajendrachari S, Adimule VM, Jayaprakash GK, Pandith A (2023) Mater Res Express 10:054003

    Article  Google Scholar 

  13. Cohen ML (2001) Mater Sci Eng 15:1

    Article  Google Scholar 

  14. Pushpanjali PA, Manjunatha JG, Tigari G, Fattepur S (2020) Anal Bioanal Electrochem 12:553

    CAS  Google Scholar 

  15. Rubianes MD, Rivas GA (2003) Electrochem Commun 5:689

    Article  CAS  Google Scholar 

  16. Sanghavi BJ, Srivastava AK (2010) Electrochim Acta 55:8638

    Article  CAS  Google Scholar 

  17. Mazloum Ardakani M, Taleat Z, Beitollahi H, Salavati-Niasari M, Mirjalili BBF, Taghavinia N (2008) J Electroanal Chem 624:73

    Article  CAS  Google Scholar 

  18. Rajendrachari S, Jayaprakash GK, Pandith A, Karaoglanli AC, Uzun O (2022) Catalysts 12:994

    Article  CAS  Google Scholar 

  19. Mazloum-Ardakani M, Beitollahi H, Sheikh Mohseni MA, Benvidi A, Naeimi H, Nejati-Barzoki M, Taghavinia N (2010) Colloids Surf B 76:82

    Article  CAS  Google Scholar 

  20. Mazloum Ardakani M, Taleat Z, Alireza K, Beitollahi H, Hossein D (2012) Biosens Bioelectron. 35:75

    Article  CAS  PubMed  Google Scholar 

  21. Rajendrachari S, Nagaraj B, Vinayak MA, Baris A, Prathap S, Saravana Kumar RM, Kwang-Hyun B (2022) Biosensors. 12:11173

    Article  Google Scholar 

  22. Chen Y, Liu H, Liu Y, Yang Z (2014) Anal Methods 6:1203

    Article  CAS  Google Scholar 

  23. Purushothama HT, Nayaka YA, Vinay MM, Manjunatha P, Yathisha RO, Basavarajappa KV (2018) J Sci Adv Mater Devices 3:161

    Article  Google Scholar 

  24. Alizadeh T, Akhoundian M (2010) Electrochim Acta 55:5867

    Article  CAS  Google Scholar 

  25. De Jesus CG, Sampaio Forte CM, Wohnrath K, Andrade Pessôa C, de Sá Soares JE, Fujiwara ST, de Lima-Neto P, Nunes Correia A (2011) Electroanalysis 23:1814

    Article  Google Scholar 

  26. Mamani MCV, Amaya-Farfan J, Reyes FGR, Silva JAF, da Rath S (2008) Talanta 76:1006

    Article  CAS  PubMed  Google Scholar 

  27. Ji W, Yao W (2015) Biomol Spectrosc 144:125

    Article  CAS  Google Scholar 

  28. Sniegocki T, Posyniak A, Gbylik-Sikorska M, Zmudzki J (2014) Anal Lett 47:568

    Article  CAS  Google Scholar 

  29. Manjunatha JG, Deraman M, Basri NH, Talib IA (2018) Arab J Chem 11:149

    Article  CAS  Google Scholar 

  30. Pushpanjali PA, Manjunatha JG, Hareesha N, Tighezza AM, Albaqami MD, Sillanpää M (2023) ChemistrySelect 8:e202300818

    Article  CAS  Google Scholar 

  31. Charithra MM, Manjunatha JG, Al-Kahtani AA, Tighezza AM, Ataollahi N (2022). Top Catal. https://doi.org/10.1007/s11244-021-01560-8

    Article  Google Scholar 

  32. Prinith NS, Manjunatha JG, Hareesha N (2021) J Iran Chem Soc 18:3493

    Article  CAS  Google Scholar 

  33. Kanthappa B, Manjunatha JG, Hareesha N, Tighezza AM, Albaqami MD, Sillanpää M (2022) Chemosensors 10:461

    Article  Google Scholar 

  34. Manjunatha JG, Deraman M, Basri NH (2015) Asian J Pharm Clin 8:48

    CAS  Google Scholar 

  35. Geng L, Huang J, Zhai H, Shen Z, Han J, Yu Y, Fang H, Li F, Sun X, Guo Y (2022) Microchem J 182:107887

    Article  CAS  Google Scholar 

  36. Monnappa AB, Manjunatha JGG, Bhatt AS, Nagarajappa HJ (2021) Sci Adv Mater Devices 6:415

    Article  CAS  Google Scholar 

  37. Manjunatha JG, Kanthappa B, HareeshaRaril NC, Tighezza AM (2024). Chem Afr. https://doi.org/10.1007/s42250-023-00808-y

    Article  Google Scholar 

  38. Bairagi PK, Verma N (2018) J Electroanal Chem 814:134

    Article  CAS  Google Scholar 

  39. Reddaiah K, Reddy TM, Raghu P (2012) J Electroanal Chem 682:164

    Article  CAS  Google Scholar 

  40. Hareesha N, Manjunatha JG, Girish T, ALOthman ZA (2023). Int J Environ Anal Chem. https://doi.org/10.1080/03067319.2023.2226605

    Article  Google Scholar 

  41. Nikhil JL, Manjunatha JG, Hareesha N, Kanthappa B, Karthik CS, Mallu P, ALOthman ZA (2023) Adsgf. J Electron Mater. 52:7021

    Article  CAS  Google Scholar 

  42. Asha M, Manjunatha JG, Moulya KP, Aldossari SA, Mohammed S, Mushab NS (2024). Monatsh Chem. https://doi.org/10.1007/s00706-023-03137-5

    Article  Google Scholar 

Download references

Acknowledgements

Dr. J.G. Manjunatha gratefully acknowledges the financial support from the VGST, Bangalore under Research Project. No. VGST/KFIST L-2/2022-23/GRD-1020. Kanthappa Bhimaraya gratefully acknowledges the financial support from the SC/ST Cell for the SC/ST Fellowship (No. MU/SCTRF/CR5/2019-20/SCT-1), Mangalore University. Sameh M. Osman gratefully acknowledges the financial support from Researchers Supporting Project number (RSP2023R405), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. G. Manjunatha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krithi, B.R., Manjunatha, J.G., Kanthappa, B. et al. Enhancing of methyl orange oxidation using nanotube sensor: analytical application in water. Monatsh Chem 155, 457–465 (2024). https://doi.org/10.1007/s00706-024-03183-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-024-03183-7

Keywords

Navigation