Skip to main content
Log in

Variable-Order Fractional Laplacian and its Accurate and Efficient Computations with Meshfree Methods

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The variable-order fractional Laplacian plays an important role in the study of heterogeneous systems. In this paper, we propose the first numerical methods for the variable-order Laplacian \((-\varDelta )^{\alpha (\textbf{x} )/2}\) with \(0 < \alpha (\textbf{x} ) \le 2\), which will also be referred as the variable-order fractional Laplacian if \(\alpha (\textbf{x} )\) is strictly less than 2. We present a class of hypergeometric functions whose variable-order Laplacian can be analytically expressed. Building on these analytical results, we design the meshfree methods based on globally supported radial basis functions (RBFs), including Gaussian, generalized inverse multiquadric, and Bessel-type RBFs, to approximate the variable-order Laplacian \((-\varDelta )^{\alpha (\textbf{x} )/2}\). Our meshfree methods integrate the advantages of both pseudo-differential and hypersingular integral forms of the variable-order fractional Laplacian, and thus avoid numerically approximating the hypersingular integral. Moreover, our methods are simple and flexible of domain geometry, and their computer implementation remains the same for any dimension \(d \ge 1\). Compared to finite difference methods, our methods can achieve a desired accuracy with much fewer points. This fact makes our method much attractive for problems involving variable-order fractional Laplacian where the number of points required is a critical cost. We then apply our method to study solution behaviors of variable-order fractional PDEs arising in different fields, including transition of waves between classical and fractional media, and coexistence of anomalous and normal diffusion in both diffusion equation and the Allen–Cahn equation. These results would provide insights for further understanding and applications of variable-order fractional derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

References

  1. Acosta, G., Borthagaray, J.P.: A fractional Laplace equation: regularity of solutions and finite element approximations. SIAM J. Numer. Anal. 55(2), 472–495 (2017)

    MathSciNet  Google Scholar 

  2. Ainsworth, M., Glusa, C.: Towards an efficient finite element method for the integral fractional Laplacian on polygonal domains. In: Contemporary Computational Mathematics—A Celebration of the 80th Birthday of Ian Sloan, vol. 1, pp. 17–57. Springer, Cham (2018)

  3. Antoine, X., Lorin, E., Zhang, Y.: Derivation and analysis of computational methods for fractional Laplacian equations with absorbing layers. Numer. Algorithms 87, 409–444 (2021)

    MathSciNet  Google Scholar 

  4. Baeumer, B., Meerschaert, M.M.: Tempered stable Lévy motion and transient super-diffusion. J. Comput. Appl. Math. 233(10), 2438–2448 (2010)

    MathSciNet  Google Scholar 

  5. Bass, R.F.: Uniqueness in law for pure jump Markov processes. Probab. Theory Rel. 79(2), 271–287 (1988)

    MathSciNet  Google Scholar 

  6. Bonito, A., Lei, W., Pasciak, J.E.: Numerical approximation of the integral fractional Laplacian. Numer. Math. 142(2), 235–278 (2019)

    MathSciNet  Google Scholar 

  7. Burkardt, J., Wu, Y., Zhang, Y.: A unified meshfree pseudospectral method for solving both classical and fractional PDEs. SIAM J. Sci. Comput. 43(2), A1389–A1411 (2021)

    MathSciNet  Google Scholar 

  8. Chen, H., Zhou, H., Qu, S.: Low rank approximation for time domain viscoacoustic wave equation with spatially varying order fractional Laplacians. In: 84th Annual International Meeting, SEG:3400–3405 (2014)

  9. Chen, X., Chen, Z.-Q., Wang, J.: Heat kernel for nonlocal operators with variable-order. Stoch. Proc. Appl. 130(6), 3574–3647 (2020)

    Google Scholar 

  10. Cruz-Uribe, D.V., Fiorenza, A.: Variable lebesgue spaces. In: Applied and Numerical Harmonic Analysis. Birkhäuser/Springer, Heidelberg (2013)

  11. D’Elia, M., Glusa, C.: A fractional model for anomalous diffusion with increased variability: analysis, algorithms and applications to interface problems. Numer. Methods Partial Differ. Equ. 1–20 (2021)

  12. Diening, L., Harjulehto, P., Hästö, P., Røcircužička, M.: Lebesgue and Sobolev spaces with variable exponents. In: Lecture Notes in Mathematics, vol. 2017. Springer, Heidelberg (2011)

  13. Du, R., Sun, Z., Wang, H.: Temporal second-order finite difference schemes for variable-order time-fractional wave equations. SIAM J. Numer. Anal. 60(1), 104–132 (2022)

    MathSciNet  Google Scholar 

  14. Dubrulle, B., Laval, J.-P.: Truncated Lévy laws and 2d turbulence. Phys. J. B 4, 143–146 (1998)

    Google Scholar 

  15. Duo, S., van Wyk, H.W., Zhang, Y.: A novel and accurate finite difference method for the fractional Laplacian and the fractional Poisson problem. J. Comput. Phys. 355, 233–252 (2018)

    MathSciNet  Google Scholar 

  16. Duo, S., Zhang, Y.: Computing the ground and first excited states of the fractional Schrödinger equation in an infinite potential well. Commun. Comput. Phys. 18(2), 321–350 (2015)

    MathSciNet  Google Scholar 

  17. Duo, S., Zhang, Y.: Mass-conservative Fourier spectral methods for solving the fractional nonlinear Schrödinger equation. Comput. Math. Appl. 71(11), 2257–2271 (2016)

    MathSciNet  Google Scholar 

  18. Duo, S., Zhang, Y.: Accurate numerical methods for two and three dimensional integral fractional Laplacian with applications. Comput. Methods Appl. Mech. Eng. 355, 639–662 (2019)

    MathSciNet  Google Scholar 

  19. Duo, S., Wang, H.: A fractional phase-field model using an infinitesimal generator of \(\alpha \) stable Lévy process. J. Comput. Phys. 384, 253–269 (2019)

    MathSciNet  Google Scholar 

  20. Duo, S., Zhang, Y.: Numerical approximations for the tempered fractional Laplacian: error analysis and applications. J. Sci. Comput. 81(1), 569–593 (2019)

    MathSciNet  Google Scholar 

  21. Dwivedi, K.D., Rajeev, Das, S., Gomez-Aguilar, J.F.: Finite difference/collocation method to solve multi term variable-order fractional reaction–advection–diffusion equation in heterogeneous medium. Numer. Methods Partial Differ. Equ. 37(3), 2031–2045 (2021)

    MathSciNet  Google Scholar 

  22. Dyda, B.: Fractional Hardy inequality with a remainder term. Colloq. Math. 122(1), 59–67 (2011)

    MathSciNet  Google Scholar 

  23. Dyda, B.: Fractional calculus for power functions and eigenvalues of the fractional Laplacian. Fract. Calc. Appl. Anal. 15(4), 536–555 (2012)

    MathSciNet  Google Scholar 

  24. Dyda, B., Kuznetsov, A., Kwaśnicki, M.: Fractional Laplace operator and Meijer G-function. Constr. Approx. 45(3), 427–448 (2017)

    MathSciNet  Google Scholar 

  25. Flyer, N.: Exact polynomial reproduction for oscillatory radial basis functions on infinite lattices. Comput. Math. Appl. 51(8), 1199–1208 (2006)

    MathSciNet  Google Scholar 

  26. Fornberg, B., Driscoll, T.A., Wright, G., Charles, R.: Observations on the behavior of radial basis function approximations near boundaries. Comput. Math. Appl. 43(3–5), 473–490 (2002)

    MathSciNet  Google Scholar 

  27. Fornberg, B., Larsson, E., Wright, G.: A new class of oscillatory radial basis functions. Comput. Math. Appl. 51(8), 1209–1222 (2006)

    MathSciNet  Google Scholar 

  28. Fornberg, B., Zuev, J.: The Runge phenomenon and spatially variable shape parameters in RBF interpolation. Comput. Math. Appl. 54(3), 379–398 (2007)

    MathSciNet  Google Scholar 

  29. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products, 7th edn. Academic Press, Amsterdam (2007)

    Google Scholar 

  30. Hao, Z., Zhang, Z., Du, R.: Finite centered difference scheme for high-dimensional integral fractional Laplacian. J. Comput. Phys. 424, 109851 (2021)

    Google Scholar 

  31. Hörmander, L.: Pseudo-differential operators. Commun. Pure Appl. Math. 18, 501–517 (1965)

    MathSciNet  Google Scholar 

  32. Javanainen, M., Hammarén, H., Monticelli, L., Jeon, J., Miettinen, M.S., Martinez-Seara, H., Metzler, R., Vattulainen, I.: Anomalous and normal diffusion of proteins and lipids in crowded lipid membranes. Faraday Discuss. 161, 397–417 (2013)

    Google Scholar 

  33. Kansa, E.J.: Multiquadrics: A scattered data approximation scheme with applications to computational fluid-dynamics. I. Surface approximations and partial derivative estimates. Comput. Math. Appl. 19(8–9), 127–145 (1990)

    MathSciNet  Google Scholar 

  34. Kansa, E.J.: Multiquadrics: A scattered data approximation scheme with applications to computational fluid-dynamics. II. Solutions to parabolic, hyperbolic and elliptic partial differential equations. Comput. Math. Appl. 19(8–9), 147–161 (1990)

    MathSciNet  Google Scholar 

  35. Kikuchi, K., Negoro, A.: On Markov process generated by pseudodifferential operator of variable order. Osaka J. Math. 34(2), 319–335 (1997)

    MathSciNet  Google Scholar 

  36. Kirkpatrick, K., Zhang, Y.: Fractional Schrödinger dynamics and decoherence. Physica D 332, 41–54 (2016)

    MathSciNet  Google Scholar 

  37. Kohn, J.J., Nirenberg, L.: An algebra of pseudo-differential operators. Commun. Pure Appl. Math. 18(1–2), 269–305 (1965)

    MathSciNet  Google Scholar 

  38. Kühn, F.: Lévy type processes: moments, construction and heat kernel estimates. In: Springer Lecture Notes in Mathematics, vol. 2187. Springer, Berlin (2017)

  39. Kühn, F.: Schauder estimates for Poisson equations associated with non-local feller generators. J. Theor. Probab. 17 (2020)

  40. Larsson, E., Fornberg, B.: Theoretical and computational aspects of multivariate interpolation with increasingly flat radial basis functions. Comput. Math. Appl. 49(1), 103–130 (2005)

    MathSciNet  Google Scholar 

  41. Lenzi, E.K., Ribeiro, H.V., Tateishi, A.A., Zola, R.S., Evangelista, L.R.: Anomalous diffusion and transport in heterogeneous systems separated by a membrane. Proc. R. Soc. A Math. Phys. Eng. Sci. 472(2195), 20160502 (2016)

    MathSciNet  Google Scholar 

  42. Leopold, H.: Embedding of function spaces of variable order of differentiation in function spaces of variable order of integration. Czechoslovak Math. J. 49(3), 633–644 (1999)

    MathSciNet  Google Scholar 

  43. Lin, R., Liu, F., Anh, V., Turner, I.: Stability and convergence of a new explicit finite-difference approximation for the variable-order nonlinear fractional diffusion equation. Appl. Math. Comput. 212(2), 435–445 (2009)

    MathSciNet  Google Scholar 

  44. Lorenzo, C.F., Hartley, T.T.: Variable order and distributed order fractional operators. Nonlinear Dyn. 29(1–4), 57–98 (2002)

    MathSciNet  Google Scholar 

  45. Luo, D., Wang, J.: Coupling by reflection and Hölder regularity for non-local operators of variable order. Trans. Am. Math. Soc. 371(1), 431–459 (2019)

    Google Scholar 

  46. Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for two-sided space-fractional partial differential equations. Appl. Numer. Math. 56(1), 80–90 (2006)

    MathSciNet  Google Scholar 

  47. Meerschaert, M.M., Zhang, Y., Baeumer, B.: Tempered anomalous diffusion in heterogeneous systems. Geophys. Res. Lett. 35(17), L17403 (2008)

    Google Scholar 

  48. Pang, G., Chen, W., Fu, Z.: Space-fractional advection–dispersion equations by the Kansa method. J. Comput. Phys. 293, 280–296 (2015)

    MathSciNet  Google Scholar 

  49. Piret, C., Hanert, E.: A radial basis functions method for fractional diffusion equations. J. Comput. Phys. 238, 71–81 (2013)

    MathSciNet  Google Scholar 

  50. Prudnikov, A.P., Brychkov, Yu.A., Marichev, O.I.: Integrals and Series, vol. 3. Gordon and Breach Science Publishers, New York (1990)

    Google Scholar 

  51. Rafeiro, H., Samko, S.G.: Fractional integrals and derivatives: mapping properties. Fract. Calc. Appl. Anal. 19(3), 580–607 (2016)

    MathSciNet  Google Scholar 

  52. Rosenfeld, J.A., Rosenfeld, S.A., Dixon, W.E.: A mesh-free pseudospectral approach to estimating the fractional Laplacian via radial basis functions. J. Comput. Phys. 390, 306–322 (2019)

    MathSciNet  Google Scholar 

  53. Samko, S.G.: Fractional integration and differentiation of variable order: an overview. Nonlinear Dyn. 71(4), 653–662 (2013)

    MathSciNet  Google Scholar 

  54. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives. Gordon and Breach Science Publishers, Yverdon (1993)

    Google Scholar 

  55. Samko, S.G., Ross, B.: Integration and differentiation to a variable fractional order. Integral Transform. Spec. Funct. 1(4), 277–300 (1993)

    MathSciNet  Google Scholar 

  56. Sarra, S.A., Kansa, E.J.: Multiquadric radial basis function approximation methods for the numerical solution of partial differential equations. Adv. Comput. Mech. 2, 220 (2009)

    Google Scholar 

  57. Song, F., Xu, C., Karniadakis, G.E.: A fractional phase-field model for two-phase flows with tunable sharpness: algorithms and simulations. Comput. Methods Appl. Mech. Engrg. 305, 376–404 (2016)

    MathSciNet  Google Scholar 

  58. Sun, H., Chang, A., Zhang, Y., Chen, W.: A review on variable-order fractional differential equations: mathematical foundations, physical models, numerical methods and applications. Fract. Calc. Appl. Anal. 22(1), 27–59 (2019)

    MathSciNet  Google Scholar 

  59. Tang, T., Wang, L.-L., Yuan, H., Zhou, T.: Rational spectral methods for PDEs involving fractional Laplacian in unbounded domains. SIAM J. Sci. Comput. 42(2), A585–A611 (2020)

    MathSciNet  Google Scholar 

  60. Tsuchiya, M.: Lévy measure with generalized polar decomposition and the associated SDE with jumps. Stoch. Int. J. Probab. Stoch. Process. 38(2), 95–117 (1992)

    Google Scholar 

  61. Wu, Y., Zhang, Y.: A universal solution scheme for fractional and classical PDEs (2020). arXiv:2102.00113

  62. Xiang, M., Zhang, B., Yang, D.: Multiplicity results for variable-order fractional Laplacian equations with variable growth. Nonlinear Anal. 178, 190–204 (2019)

    MathSciNet  Google Scholar 

  63. Xue, Z., Baek, H., Zhang, H., Zhao, Y., Zhu, T., Fomel, S.: Solving fractional Laplacian viscoelastic wave equations using domain decomposition. In: 88th Annual International Meeting, SEG, pp. 3943–3947 (2018)

  64. Zhang, Y., Meerschaert, M., Packman, A.: Linking fluvial bed sediment transport across scales. Geophys. Res. Lett. 39, L20404 (2012)

    Google Scholar 

  65. Zhao, X., Sun, Z., Karniadakis, G.E.: Second-order approximations for variable order fractional derivatives: algorithms and applications. J. Comput. Phys. 293, 184–200 (2015)

    MathSciNet  Google Scholar 

  66. Zhu, T., Harris, J.M.: Modeling acoustic wave propagation in heterogeneous attenuating media using decoupled fractional Laplacians. Geophysics 79(3), T105–T116 (2014)

    Google Scholar 

Download references

Funding

This work was partially supported by the US National Science Foundation under Grant Numbers DMS-1913293 and DMS-1953177.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed to the study conception and design. The first draft of the manuscript was written by Yixuan Wu and both authors commented on previous versions of the manuscript. Both authors read and approved the final manuscript.

Corresponding author

Correspondence to Yanzhi Zhang.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Zhang, Y. Variable-Order Fractional Laplacian and its Accurate and Efficient Computations with Meshfree Methods. J Sci Comput 99, 18 (2024). https://doi.org/10.1007/s10915-024-02472-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-024-02472-x

Keywords

Mathematics Subject Classification

Navigation