Skip to main content
Log in

Experimental Investigation on Pool Boiling Heat Transfer Performance of Superhydrophilic, Hydrophilic and Hydrophobic Surface

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The recent advances in the growth of heat dissipation from microelectronic devices have led to the two-phase heat transfer method via nucleate boiling for better thermal management. In this study, the effect of surface wettability on the saturated pool boiling heat transfer performance is examined with deionized water. Three types of wettability surfaces are compared, i.e., superhydrophilic (SHPi), hydrophilic (HPi) and hydrophobic (HPo) surfaces. The SHPi surface is prepared by anodic oxidation of the copper surface, while the HPi and HPo surface is prepared by coating Cu–TiO2 and Cu–MWCNTs, respectively, on the copper surface using the electrochemical deposition method. The earliest incipience of nucleate boiling was observed with the HPo surface, while a most delayed onset of nucleation was obtained for the SHPi surface. The critical heat flux is found to be 1012 kW·m−2, 1251 kW·m−2, 1490 kW·m−2 and 1610 kW·m−2 corresponding to the plane copper, HPo, HPi and SHPi surfaces following the ascending order. The improved rewetting of the arid area underneath the formed vapour bubble caused a delay in the dry-out occurrence and resulted in a maximum critical heat flux for the SHPi surface. The maximum heat transfer coefficient of 88.42 kW·m−2·K−1, 64.7 kW·m−2·K−1 and 59.19 kW·m−2·K−1 have been observed for the HPi, HPo and SHPi surfaces, respectively, which translates to an increment of 60.2 %, 17.23 % and 7.25 %, respectively, as compared to plain surface. The SHPi surface induces the rightward shifting of the boiling curve as compared to the plane surface, which gives a lower heat transfer coefficient for a particular heat flux.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

Abbreviations

A:

Boiling surface area (m2)

Cp :

Specific heat (kJ·kg−1·K−1)

CHF:

Critical heat flux

Cu:

Copper

DI:

De-ionized

FB :

Buoyancy force (N)

FM :

Evaporative momentum force (N)

FST :

Surface tension force (N)

h/HTC:

Heat transfer coefficient (kW·m−2·K−1)

hfg :

Latent heat of vaporization (J·kg−1)

HPi:

Hydrophilic

HPo:

Hydrophobic

I:

Current (A)

k:

Thermal conductivity (W·m−1·K−1)

MWCNTs:

Multiwalled carbon nanotubes

ONB:

Onset of nucleate boiling

q″:

Heat flux (W·m−2)

r:

Curvature radius of bubble (m)

SHPi:

Superhydrophilic

SHPo:

Superhydrophobic

T:

Temperature (K)

ΔT:

Wall superheat temperature (K)

TiO2 :

Titanium oxide

U:

Uncertainty

V:

Voltage (V)

y1 :

Distance between boiling surface and adjacent thermocouple (m)

Δy:

Gap between thermocouples (m)

σ:

Surface tension (N·m−1)

ρ:

Density (kg·m−3)

μ:

Viscosity (N·s·m−2)

θ:

Contact angle (°)

s:

Surface

sat:

Saturation

sub:

Subcooled

eff:

Effective

l:

Liquid

v:

Vapor

References

  1. S.K. Gupta, R.D. Misra, Int. J. Thermophys. 44, 134 (2023)

    Article  ADS  Google Scholar 

  2. A. Dallali, M. Khayat, N. Bahadori, Int. J. Thermophys. 42, 162 (2021)

    Article  ADS  Google Scholar 

  3. D. Vasudevan, D. Senthilkumar, S. Surendhiran, Int. J. Thermophys. 41, 74 (2020)

    Article  ADS  Google Scholar 

  4. A. Abdollahi, M.B. Botlani Esfahani, S.M. Sajadi, A. Sadeghi, M. Shahgholi, A. Karimipour, M. Inc, Int. J. Thermophys. 44, 62 (2023)

    Article  ADS  Google Scholar 

  5. S.K. Singh, D. Sharma, A.K. Singh, Heat Transf. Eng. 45, 1 (2023)

    Google Scholar 

  6. G. Liang, Y. Chen, J. Wang, Z. Wang, S. Shen, Int. J. Multiph. Flow 144, 103810 (2021)

    Article  Google Scholar 

  7. Y. Song, L. Zhang, C.D. Díaz-Marín, S.S. Cruz, E.N. Wang, Int. J. Heat Mass Transf. 183, 122189 (2022)

    Article  Google Scholar 

  8. H. Jiang, X. Yu, N. Xu, D. Wang, J. Yang, H. Chu, Exp. Therm. Fluid Sci. 136, 110663 (2022)

    Article  Google Scholar 

  9. V.V. Nirgude, S.K. Sahu, Thermochim. Acta 694, 178788 (2020)

    Article  Google Scholar 

  10. M. Ghazvini, M. Hafez, P. Mandin, M. Kim, Int. J. Multiph. Flow 168, 104568 (2023)

    Article  Google Scholar 

  11. B. Majumder, A.D. Pingale, A.S. Katarkar, S.U. Belgamwar, S. Bhaumik, J. Eng. Thermophys. 31, 720 (2022)

    Article  Google Scholar 

  12. S.K. Singh, D. Sharma, Int. J. Heat Mass Transf. 181, 122020 (2021)

    Article  Google Scholar 

  13. M.A.H. Mudhafar, W. Zheng-Hao, Heat Mass Transf. 58, 1963 (2022)

    Article  ADS  Google Scholar 

  14. G. Huang, K. Tang, S. Yu, Y. Tang, S. Zhang, Int. J. Heat Mass Transf. 184, 122382 (2022)

    Article  Google Scholar 

  15. B. Majumder, A.D. Pingale, A.S. Katarkar, S.U. Belgamwar, S. Bhaumik, Int. J. Thermophys. 43, 49 (2022)

    Article  ADS  Google Scholar 

  16. A.N. Pavlenko, D.V. Kuznetsov, V.P. Bessmeltsev, J. Eng. Thermophys. 31, 1 (2022)

    Article  Google Scholar 

  17. S. Das, R. Johnsan, C.S. Sujith Kumar, A. Datta, J. Therm. Anal. Calorim. 144, 1073 (2021)

    Article  Google Scholar 

  18. S.K. Gupta, R.D. Misra, Int. J. Thermophys. 44, 112 (2023)

    Article  ADS  Google Scholar 

  19. A.S. Katarkar, A.D. Pingale, S.U. Belgamwar, S. Bhaumik, Int. J. Thermophys. 42, 124 (2021)

    Article  ADS  Google Scholar 

  20. J.C. Godinez, H. Cho, D. Fadda, J. Lee, S.J. Park, S.M. You, Int. J. Therm. Sci. 165, 106929 (2021)

    Article  Google Scholar 

  21. X. Cheng, G. Yang, J. Wu, Int. J. Heat Mass Transf. 192, 122937 (2022)

    Article  Google Scholar 

  22. M.B.B. Esfahani, S. Mohammad Sajadi, N.H. Abu-Hamdeh, S. Bezzina, A. Abdollahi, A. Karimipour, F. Ghaemi, D. Baleanu, J. Mol. Liq. 345, 117891 (2022)

    Article  Google Scholar 

  23. A. Haji, H. Moghadasi, H. Saffari, Exp. Heat Transf. 35, 1038 (2022)

    Article  ADS  Google Scholar 

  24. H. Alimoradi, M. Shams, N. Ashgriz, Int. J. Multiph. Flow 159, 104350 (2023)

    Article  Google Scholar 

  25. B. Shil, D. Sen, A. Kumar Das, P. Sen, S. Kalita, S. Das, Therm. Sci. Eng. Prog. 43, 101965 (2023)

    Article  Google Scholar 

  26. Z. Zhong, C. Huang, X. Wang, Int. J. Therm. Sci. 184, 107965 (2023)

    Article  Google Scholar 

  27. C. Li, Y. Zou, Z. Shen, X. Zhang, K. Wu, W. Wang, J. Duan, Adv. Powder Technol. 34, 104080 (2023)

    Article  Google Scholar 

  28. Y. Kang, Z. Lang, G. Wu, H. Zhao, Exp. Therm. Fluid Sci. 144, 110852 (2023)

    Article  Google Scholar 

  29. A.S. Katarkar, A.D. Pingale, S.U. Belgamwar, S. Bhaumik, J. Braz. Soc. Mech. Sci. Eng. 45, 40 (2022)

    Article  Google Scholar 

  30. H. Shakeri, A. Heidary, H. Saffari, S.M. Hosseinalipoor, Chem. Eng. Process. Process Intensif. 187, 109296 (2023)

    Article  Google Scholar 

  31. H. Hu, Y. Zhao, Z. Lai, C. Hu, Int. J. Therm. Sci. 168, 107069 (2021)

    Article  Google Scholar 

  32. H. Hu, Y. Zhao, Z. Lai, C. Hu, Appl. Therm. Eng. 179, 115730 (2020)

    Article  Google Scholar 

  33. J.R. Taylor, W. Thompson, Phys. Today 51, 57 (1998)

    Article  Google Scholar 

  34. L. Gao, M. Bai, J. Lv, Y. Li, X. Lv, X. Liu, Y. Li, Exp. Therm. Fluid Sci. 140, 110769 (2023)

    Article  Google Scholar 

  35. A. Bharadwaj, R.D. Misra, Int. Commun. Heat Mass Transf. 138, 106397 (2022)

    Article  Google Scholar 

  36. Q. Li, J. Zhao, X. Sun, B. Liu, Appl. Therm. Eng. 215, 118924 (2022)

    Article  Google Scholar 

  37. S. Kalita, P. Sen, D. Sen, S. Das, A.K. Das, B.B. Saha, Therm. Sci. Eng. Prog. 26, 101114 (2021)

    Article  Google Scholar 

  38. W.M. Rohsenow, Trans. Am. Soc. Mech. Eng. 74, 969 (2022)

    Article  Google Scholar 

  39. N. Zuber, Trans. Am. Soc. Mech. Eng. 80, 711 (1958)

    Article  Google Scholar 

  40. S.G. Kandlikar, J. Heat Transf. 123, 1071 (2001)

    Article  Google Scholar 

  41. Y.Y. Hsu, J. Heat Transf. 84, 207 (1962)

    Article  Google Scholar 

  42. X. Yuan, Y. Du, G. Fei, R. Yang, Energy Rep. 9, 6174 (2023)

    Article  Google Scholar 

  43. A. Ranjan, I. Ahmad, R.K. Gouda, M. Pathak, M.K. Khan, Int. J. Therm. Sci. 172, 107338 (2022)

    Article  Google Scholar 

  44. S. Najafpour, A. Moosavi, S.V. Rad, Int. Commun. Heat Mass Transf. 113, 104553 (2020)

    Article  Google Scholar 

  45. S. Kalita, D. Sen, P. Sen, S. Das, B.B. Saha, Int. Commun. Heat Mass Transf. 144, 106740 (2023)

    Article  Google Scholar 

  46. S.K. Gupta, R.D. Misra, J. Therm. Anal. Calorim. 136, 1781 (2019)

    Article  Google Scholar 

  47. M. Dharmendra, S. Suresh, C.S. Sujith Kumar, Q. Yang, Appl. Therm. Eng. 99, 61 (2016)

    Article  Google Scholar 

  48. A. Ranjan, A. Islam, M. Pathak, M.K. Khan, A.K. Keshri, Vacuum 168, 108834 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge NIT Kurukshetra for providing FEG-SEM, EDS and XRD Facility, IIT Delhi for surface profilometer, IIT Ropar for thermal conductivity analyzer and NIT Hamirpur for technical assistance.

Funding

The authors acknowledge the financial support from the Science and Engineering Research Board, India (No. CRG/2021/001457).

Author information

Authors and Affiliations

Authors

Contributions

Sudhir Kumar Singh: Conceptualization, Methodology, Investigation, Writing – original draft. Deepak Sharma: Supervision, Funding acquisition, Writing – review & editing.

Corresponding author

Correspondence to Deepak Sharma.

Ethics declarations

Conflict of interest

The author(s) declared no potential conflict of interest that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S.K., Sharma, D. Experimental Investigation on Pool Boiling Heat Transfer Performance of Superhydrophilic, Hydrophilic and Hydrophobic Surface. Int J Thermophys 45, 53 (2024). https://doi.org/10.1007/s10765-024-03350-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-024-03350-2

Keywords

Navigation