Skip to main content
Log in

Fox–Neuwirth cells, quantum shuffle algebras, and the homology of type-B Artin groups

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

In this paper, we will develop a family of braid representations of Artin groups of type B from braided vector spaces, and identify the homology of these groups with these coefficients with the cohomology of a specific bimodule over a quantum shuffle algebra. As an application, we give a complete characterization of the homology of type-B Artin groups with coefficients in one-dimensional braid representations over a field of characteristic 0. We will also discuss two different approaches to this computation: the first method extends a computation of the homology of braid groups due to Ellenberg–Tran–Westerland by means of induced representation, while the second method involves constructing a cellular stratification for configuration spaces of the punctured complex plane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

No datasets were generated or analysed during this study.

Notes

  1. In this paper, we reserve the use of the notation \(B_n\) for the nth Artin group of type B. The nth braid group will be denoted by \(A_n\), due to its relation to the Artin groups of type A.

References

  1. Akita, T., Liu, Y.: Second mod 2 homology of Artin groups. Algebr. Geom. Topol. 18(1), 547–568 (2018)

    Article  MathSciNet  Google Scholar 

  2. Arnol’d, V.I.: The cohomology ring of the colored braid group. In: Vladimir I. Arnol’d-Collected Works, pp. 183–186. Springer, New York (1969)

  3. Arnol’d, V.I.: On some topological invariants of algebraic functions. Trans. Moscow Math. Soc. 21, 30–52 (1970)

    Google Scholar 

  4. Baez, J.C.: Hochschild homology in a braided tensor category. Trans. Am. Math. Soc. 344(2), 885–906 (1994)

    Article  MathSciNet  Google Scholar 

  5. Boyd, R.: The low-dimensional homology of finite-rank Coxeter groups. Algebr. Geom. Topol. 20(5), 2609–2655 (2020)

    Article  MathSciNet  Google Scholar 

  6. Callegaro, F.: The homology of the Milnor fiber for classical braid groups. Algebr. Geom. Topol. 6, 1903–1923 (2006)

    Article  MathSciNet  Google Scholar 

  7. Callegaro, F., Marin, I.: Homology computations for complex braid groups. J. Eur. Math. Soc. (JEMS) 16(1), 103–164 (2014)

    Article  MathSciNet  Google Scholar 

  8. Callegaro, F., Moroni, D., Salvetti, M.: Cohomology of affine Artin groups and applications. Trans. Am. Math. Soc. 360(8), 4169–4188 (2008)

    Article  MathSciNet  Google Scholar 

  9. Callegaro, F., Moroni, D., Salvetti, M.: Cohomology of Artin groups of type \(A_n, B_n\) and applications. In: Groups, Homotopy and Configuration Spaces, Geom. Topol. Monogr., vol. 13, pp. 85–104. Geom. Topol. Publ., Coventry (2008)

  10. Chen, W.: Homology of braid groups, the Burau representation, and points on superelliptic curves over finite fields. Isr. J. Math. 220(2), 739–762 (2017)

    Article  MathSciNet  Google Scholar 

  11. Cohen, F.: Cohomology of braid spaces. Bull. Am. Math. Soc. 79, 763–766 (1973)

    Article  MathSciNet  Google Scholar 

  12. Cohen, F.: Homology of \(\Omega ^{(n+1)}\Sigma ^{(n+1)}X\) and \(C_{(n+1)}X,\, n>0\). Bull. Am. Math. Soc. 79(1236–1241), 1973 (1974)

    Google Scholar 

  13. Crisp, J.: Injective maps between Artin groups. In: Geometric Group Theory Down Under (Canberra, 1996), pp. 119–137. de Gruyter, Berlin (1999)

  14. De Concini, C., Procesi, C., Salvetti, M.: Arithmetic properties of the cohomology of braid groups. Topology 40(4), 739–751 (2001)

    Article  MathSciNet  Google Scholar 

  15. De Concini, C., Procesi, C., Salvetti, M., Stumbo, F.: Arithmetic properties of the cohomology of Artin groups. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 28(4), 695–717 (1999)

    MathSciNet  Google Scholar 

  16. Duchamp, G., Klyachko, A., Krob, D., Thibon, J.-Y.: Noncommutative symmetric functions. III. Deformations of Cauchy and convolution algebras, vol. 1, pp. 159–216 (1997). Lie computations (Marseille, 1994)

  17. Ellenberg, J.S., Landesman, A.: Homological stability for generalized Hurwitz spaces and Selmer groups in quadratic twist families over function fields. arXiv preprint arXiv:2310.16286 (2023)

  18. Ellenberg, J.S., Tran, T., Westerland, C.: Fox–Neuwirth–Fuks cells, quantum shuffle algebras, and Malle’s conjecture for function fields. arXiv preprint arXiv:1701.04541 (2023)

  19. Fox, R., Neuwirth, L.: The braid groups. Math. Scand. 10, 119–126 (1962)

    Article  MathSciNet  Google Scholar 

  20. Frenkel, E.V.: Cohomology of the commutator subgroup of the braid group. Funktsional Anal. i Prilozhen. 22(3), 91–92 (1988)

    MathSciNet  Google Scholar 

  21. Fuks, D.B.: Cohomology of the braid group \({{\rm mod}} 2\). Funkcional. Anal. i Priložen. 4(2), 62–73 (1970)

    MathSciNet  Google Scholar 

  22. Ginzburg, V.: Lectures on noncommutative geometry. arXiv preprint arXiv:math/0506603 (2005)

  23. Giusti, C., Sinha, D.: Fox–Neuwirth cell structures and the cohomology of symmetric groups. In: Configuration spaces, CRM Series, vol. 14, pp. 273–298. Ed. Norm., Pisa (2012)

  24. Gorjunov, V.V.: The cohomology of braid groups of series \(C\) and \(D\) and certain stratifications. Funktsional. Anal. i Prilozhen. 12(2), 76–77 (1978)

    MathSciNet  Google Scholar 

  25. Grinberg, D., Reiner, V.: Hopf algebras in combinatorics. arXiv preprint arXiv:1409.8356v7 (2020)

  26. Hoang, A.T.N.: Fox–Neuwirth cells, quantum shuffle algebras, and character sums of the resultant. arXiv preprint arXiv:2308.01410 (2023)

  27. Kapranov, M., Schechtman, V.: Shuffle algebras and perverse sheaves. Pure Appl. Math. Q. 16(3), 573–657 (2020)

    Article  MathSciNet  Google Scholar 

  28. Kapranov, M., Schiffmann, O., Vasserot, E.: Spherical Hall algebra of \(\overline{{\rm Spec}({\mathbb{Z}})}\). In: Homological Mirror Symmetry and Tropical Geometry, Lect. Notes Unione Mat. Ital., vol. 15, pp. 153–196. Springer, Cham (2014)

  29. Lebed, V.: Homologies of algebraic structures via braidings and quantum shuffles. J. Algebra 391, 152–192 (2013)

    Article  MathSciNet  Google Scholar 

  30. Loday, J.-L.: Cup-product for Leibniz cohomology and dual Leibniz algebras. Math. Scand. 77(2), 189–196 (1995)

    Article  MathSciNet  Google Scholar 

  31. Malle, G.: On the distribution of Galois groups. J. Number Theory 92(2), 315–329 (2002)

    Article  MathSciNet  Google Scholar 

  32. Malle, G.: On the distribution of Galois groups. II. Exp. Math. 13(2), 129–135 (2004)

    Article  MathSciNet  Google Scholar 

  33. Marin, I.: Homology computations for complex braid groups II. J. Algebra 477, 540–547 (2017)

    Article  MathSciNet  Google Scholar 

  34. Markaryan, N.S.: Homology of braid groups with nontrivial coefficients. Mat. Zametki 59(6), 846–854, 960 (1996)

  35. Milnor, J.: The Steenrod algebra and its dual. Ann. Math. 2(67), 150–171 (1958)

    Article  MathSciNet  Google Scholar 

  36. Rosso, M.: Quantum groups and quantum shuffles. Invent. Math. 133(2), 399–416 (1998)

    Article  MathSciNet  Google Scholar 

  37. Salvetti, M.: Topology of the complement of real hyperplanes in \({ {C}}^N\). Invent. Math. 88(3), 603–618 (1987)

    Article  MathSciNet  Google Scholar 

  38. Salvetti, M.: The homotopy type of Artin groups. Math. Res. Lett. 1(5), 565–577 (1994)

    Article  MathSciNet  Google Scholar 

  39. Salvetti, M.: Cohomology of Coxeter Groups, vol. 118, pp. 199–208. 2002. Arrangements in Boston: a Conference on Hyperplane Arrangements (1999)

  40. Stanley, R.P.: Enumerative combinatorics. Volume 1, 2nd edn. Cambridge Studies in Advanced Mathematics, vol. 49. Cambridge University Press, Cambridge (2012)

  41. Vainshtein, F.V.: The cohomology of braid groups. Funktsional. Anal. i Prilozhen. 12(2), 72–73 (1978)

    Article  MathSciNet  Google Scholar 

  42. Vassiliev, V.A.: Complements of discriminants of smooth maps: topology and applications, Translations of Mathematical Monographs, vol. 98. American Mathematical Society, Providence (1992). Translated from the Russian by B. Goldfarb

  43. Vershinin, V.V.: Homology of braid groups and their generalizations. In: Knot theory (Warsaw, 1995), Banach Center Publ., vol. 42, pp. 421–446. Polish Acad. Sci. Inst. Math., Warsaw (1998)

  44. Vershinin, V.V.: Generalizations of braids and homology. Sovrem. Mat. Prilozh. (Topol. i Nekommut. Geom.) 19, 90–104 (2004)

    Google Scholar 

  45. Weibel, C.A.: An introduction to homological algebra. Cambridge Studies in Advanced Mathematics, vol. 38. Cambridge University Press, Cambridge (1994)

    Book  Google Scholar 

Download references

Acknowledgements

The author would like to acknowledge Craig Westerland for initiating the subject of study of this paper and helpful discussions. We also appreciate Calista Bernard for useful suggestions, and Alexander Voronov for providing insights about the Hochschild chain complex and Hochschild homology. Finally, we thank anonymous referees for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anh Trong Nam Hoang.

Ethics declarations

Conflict of interest

This manuscript contains original research that has not been published in another journal. There are no actual or perceived conflicts of interest in the conduct and reporting of this research.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoang, A.T.N. Fox–Neuwirth cells, quantum shuffle algebras, and the homology of type-B Artin groups. Math. Z. 306, 57 (2024). https://doi.org/10.1007/s00209-024-03445-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00209-024-03445-4

Keywords

Mathematics Subject Classification

Navigation