Skip to main content
Log in

Antibacterial and Anti-biofilm Effects of Thymoquinone Against Carbapenem-Resistant Uropathogenic Escherichia coli

  • ORIGINAL RESEARCH ARTICLE
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Carbapenem antibiotics are widely used for their broad antibacterial effects, but the emergence of carbapenem-resistant Enterobacterales has recently become a global problem. To solve this problem, research is needed to find compounds that increase antibiotic activity. Therefore, this study aimed to validate the antibacterial and anti-biofilm effects, as well as the inhibition of gene expression of thymoquinone, an extract of Nigella sativa commonly used as a spice in many dishes. The minimum inhibitory concentration of carbapenem antibiotics and thymoquinone was determined. Phenotypic analysis was performed to confirm the effect of thymoquinone on motility, which is one of the virulence factors of carbapenem-resistant uropathogenic Escherichia coli (CR-UPEC). Furthermore, quantitative real-time polymerase chain reaction analysis was used to determine the expression levels of carbapenemase gene (blaKPC), efflux pump genes (acrA, acrB, acrD, tolC), as well as motility and adhesion genes (fliC, motA). In addition, biofilm inhibition and biofilm eradication assays were performed. All strains showed resistance to carbapenem antibiotics, while an antibacterial effect was confirmed at a concentration of 256 μg/mL of thymoquinone. Phenotypic analysis revealed a nearly 50% suppression in migration distance compared to the control group at 128 μg/mL of thymoquinone. Subsequent gene expression tests indicated the downregulation of carbapenemase-, efflux pump-, motility-, and adhesion genes by thymoquinone. Furthermore, our findings demonstrated that thymoquinone exhibits both biofilm formation inhibition and eradication effects. These findings suggest that thymoquinone may serve as a potential antibiotic adjuvant for treating CR-UPEC and could be a valuable resource in combating UTIs caused by multidrug-resistant bacteria.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Abbreviations

MDR:

Multidrug-resistant

MIC:

Minimum inhibitory concentration

qPCR:

Quantitative polymerase chain reaction

PBS:

Phosphate-buffered saline

DMSO:

Dimethyl sulfoxide

References

  1. Ejrnæs K (2011) Bacterial characteristics of importance for recurrent urinary tract infections caused by Escherichia coli. Dan Med Bull 58:B4187

    PubMed  Google Scholar 

  2. Codelia-Anjum A, Lerner LB, Elterman D, Zorn KC, Bhojani N, Chughtai B (2023) Enterococcal urinary tract infections: a review of the pathogenicity, epidemiology, and treatment. Antibiotics 12:778. https://doi.org/10.3390/antibiotics12040778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Medina M, Castillo-Pino E (2019) An introduction to the epidemiology and burden of urinary tract infections. Ther Adv Urol 11:1756287219832172. https://doi.org/10.1177/1756287219832172

    Article  PubMed  PubMed Central  Google Scholar 

  4. Totsika M, Gomes Moriel D, Idris A, Rogers BA, Wurpel DJ, Phan M-D et al (2012) Uropathogenic Escherichia coli mediated urinary tract infection. Curr Drug Targets 13:1386–1399. https://doi.org/10.2174/138945012803530206

    Article  CAS  PubMed  Google Scholar 

  5. Naziri Z, Kilegolan J, Moezzi M, Derakhshandeh A (2021) Biofilm formation by uropathogenic Escherichia coli: a complicating factor for treatment and recurrence of urinary tract infections. J Hosp Infect 117:9–16. https://doi.org/10.1016/j.jhin.2021.08.017

    Article  CAS  PubMed  Google Scholar 

  6. Eberly AR, Floyd KA, Beebout CJ, Colling SJ, Fitzgerald MJ, Stratton CW et al (2017) Biofilm formation by uropathogenic Escherichia coli is favored under oxygen conditions that mimic the bladder environment. Int J Mol Sci 18:2077. https://doi.org/10.3390/ijms18102077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tan X, Pan Q, Mo C, Li X, Liang X, Li Y et al (2020) Carbapenems vs alternative antibiotics for the treatment of complicated urinary tract infection: a systematic review and network meta-analysis. Medicine. https://doi.org/10.1097/MD.0000000000018769

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hazen TH, Mettus R, McElheny CL, Bowler SL, Nagaraj S, Doi Y et al (2018) Diversity among bla KPC-containing plasmids in Escherichia coli and other bacterial species isolated from the same patients. Sci Rep 8:10291. https://doi.org/10.1038/s41598-018-28085-7

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Partridge SR, Ginn AN, Wiklendt AM, Ellem J, Wong JS, Ingram P (2015) Emergence of blaKPC carbapenemase genes in Australia. Int J Antimicrob Agents 45:130–136. https://doi.org/10.1016/j.ijantimicag.2014.10.006

    Article  CAS  PubMed  Google Scholar 

  10. Suay-García B, Pérez-Gracia MT (2019) Present and future of carbapenem-resistant Enterobacteriaceae (CRE) infections. Antibiotics (Basel) 8:122. https://doi.org/10.3390/antibiotics8030122

    Article  CAS  PubMed  Google Scholar 

  11. Van Bambeke F, Balzi E, Tulkens PM (2000) Antibiotic efflux pumps. Biochem pharmacol 60:457–470. https://doi.org/10.1016/S0006-2952(00)00291-4

    Article  PubMed  Google Scholar 

  12. Sun J, Deng Z, Yan A (2014) Bacterial multidrug efflux pumps: mechanisms, physiology and pharmacological exploitations. Biochem Biophys Res Commun 453:254–267. https://doi.org/10.1016/j.bbrc.2014.05.090

    Article  CAS  PubMed  Google Scholar 

  13. Nikaido H (2011) Structure and mechanism of RND-type multidrug efflux pumps. Adv Enzymol relat Areas Mol Biol 77:1. https://doi.org/10.1002/9780470920541.ch1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Weston N, Sharma P, Ricci V, Piddock LJ (2018) Regulation of the AcrAB-TolC efflux pump in Enterobacteriaceae. Res Microbiol 169:425–431. https://doi.org/10.1016/j.resmic.2017.10.005

    Article  CAS  PubMed  Google Scholar 

  15. Ali BH, Blunden G (2003) Pharmacological and toxicological properties of Nigella sativa. Phytother Res 17:299–305. https://doi.org/10.1002/ptr.1309

    Article  CAS  PubMed  Google Scholar 

  16. Gali-Muhtasib H, Roessner A, Schneider-Stock R (2006) Thymoquinone: a promising anti-cancer drug from natural sources. Int J Biochem Cell Biol 38:1249–1253. https://doi.org/10.1016/j.biocel.2005.10.009

    Article  CAS  PubMed  Google Scholar 

  17. Agarwal S, Srivastava R, Mishra N (2019) An overview of therapeutic potential of thymoquinone. Int J Pharm Sci Res 10:3532–3539. https://doi.org/10.13040/IJPSR.0975-8232.10(8).3532-39

    Article  CAS  Google Scholar 

  18. Khalil P, Masood S, Rehman AU, Khalil F, Nawaf J (2020) Preventive role of thymoquinone against certain chronic health issues: a review. Int J Nutr Sci 5:151–158. https://doi.org/10.30476/IJNS.2020.87110.1077

    Article  Google Scholar 

  19. Khan MA, Tania M, Fu S, Fu J (2017) Thymoquinone, as an anticancer molecule: from basic research to clinical investigation. Oncotarget 8:51907. https://doi.org/10.18632/oncotarget.17206

    Article  Google Scholar 

  20. Kohandel Z, Farkhondeh T, Aschner M, Samarghandian S (2021) Anti-inflammatory effects of thymoquinone and its protective effects against several diseases. Biomed Pharmacother 138:111492. https://doi.org/10.1016/j.biopha.2021.111492

    Article  CAS  PubMed  Google Scholar 

  21. Evirgen O, Gökçe A, Ozturk OH, Nacar E, Onlen Y, Ozer B et al (2011) Effect of thymoquinone on oxidative stress in Escherichia coli–induced pyelonephritis in rats. Curr Ther Res 72:204–215. https://doi.org/10.1016/j.curtheres.2011.09.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. CLSI C. Performance standards for antimicrobial susceptibility testing: 25th informational supplement. CLSI document M100-S25 Clinical and Laboratory Standards Institute. 2015.

  23. Kim HR, Eom YB (2021) Synergistic activity of equol and meropenem against carbapenem-resistant Escherichia coli. Antibiotics (Basel). https://doi.org/10.3390/antibiotics10020161

    Article  PubMed  PubMed Central  Google Scholar 

  24. Jang HI, Eom YB (2020) Antibiofilm and antibacterial activities of repurposing auranofin against Bacteroides fragilis. Arch Microbiol 202:473–482. https://doi.org/10.1007/s00203-019-01764-3

    Article  CAS  PubMed  Google Scholar 

  25. Jin HW, Kim HR, Eom YB (2022) Fingolimod promotes antibacterial effect of doripenem against carbapenem-resistant Escherichia coli. Antibiotics (Basel). https://doi.org/10.3390/antibiotics11081043

    Article  PubMed  PubMed Central  Google Scholar 

  26. Sharma A (2011) Antimicrobial resistance: no action today, no cure tomorrow. Indian J Med Microbiol 29:91. https://doi.org/10.4103/0255-0857.81774

    Article  CAS  PubMed  Google Scholar 

  27. Bassetti M (2013) Righi E (2013) Multidrug-resistant bacteria: what is the threat? Hematol Am Soc Hematol Educ Program 1:428–432. https://doi.org/10.1182/asheducation-2013.1.428

    Article  Google Scholar 

  28. Forouzanfar F, Bazzaz BSF, Hosseinzadeh H (2014) Black cumin (Nigella sativa) and its constituent (thymoquinone): a review on antimicrobial effects. Iran J Basic Med Sci 17:929

    PubMed  PubMed Central  Google Scholar 

  29. Naas T, Oueslati S, Bonnin RA, Dabos ML, Zavala A, Dortet L et al (2017) Beta-lactamase database (BLDB)–structure and function. J Enzym Inhib Med Chem 32:917–919. https://doi.org/10.1080/14756366.2017.1344235

    Article  CAS  Google Scholar 

  30. Arnold RS, Thom KA, Sharma S, Phillips M, Johnson JK, Morgan DJ (2011) Emergence of Klebsiella pneumoniae carbapenemase (KPC)-producing bacteria. South Med J 104:40. https://doi.org/10.1097/SMJ.0b013e3181fd7d5a

    Article  PubMed  PubMed Central  Google Scholar 

  31. Buckner MM, Blair JM, La Ragione RM, Newcombe J, Dwyer DJ, Ivens A et al (2016) Beyond antimicrobial resistance: evidence for a distinct role of the AcrD efflux pump in Salmonella biology. MBio 7:e01916-e2016. https://doi.org/10.1128/mbio.01916-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kobayashi N, Tamura N, van Veen HW, Yamaguchi A, Murakami S (2014) β-Lactam selectivity of multidrug transporters AcrB and AcrD resides in the proximal binding pocket. J Biol Chem 289:10680–10690. https://doi.org/10.1074/jbc.M114.547794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Koronakis V, Eswaran J, Hughes C (2004) Structure and function of TolC: the bacterial exit duct for proteins and drugs. Annu Rev Biochem 73:467–489. https://doi.org/10.1146/annurev.biochem.73.011303.074104

    Article  CAS  PubMed  Google Scholar 

  34. Saleh RO, Hussen BM, Mubarak SMH, Mostafavi SKS (2021) High diversity of virulent and multidrug-resistant Stenotrophomonas maltophilia in Iraq. Gene Rep. https://doi.org/10.1016/j.genrep.2021.101124

    Article  Google Scholar 

  35. Takahashi S, Tomita J, Nishioka K, Hisada T, Nishijima M (2014) Development of a prokaryotic universal primer for simultaneous analysis of Bacteria and Archaea using next-generation sequencing. PLoS ONE 9:e105592. https://doi.org/10.1371/journal.pone.0105592

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pantel A, Dunyach-Remy C, Ngba Essebe C, Mesureur J, Sotto A, Pagès J-M et al (2016) Modulation of membrane influx and efflux in Escherichia coli sequence type 131 has an impact on bacterial motility, biofilm formation, and virulence in a Caenorhabditis elegans model. Antimicrob Agents Chemother 60:2901–2911. https://doi.org/10.1128/aac.02872-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chetri S, Bhowmik D, Paul D, Pandey P, Chanda DD, Chakravarty A et al (2019) AcrAB-TolC efflux pump system plays a role in carbapenem non-susceptibility in Escherichia coli. BMC Microbiol 19:1–7. https://doi.org/10.1186/s12866-019-1589-1

    Article  CAS  Google Scholar 

  38. Puértolas-Balint F, Warsi O, Linkevicius M, Tang P-C, Andersson DI (2020) Mutations that increase expression of the EmrAB-TolC efflux pump confer increased resistance to nitroxoline in Escherichia coli. J Antimicrob Chemother 75:300–308. https://doi.org/10.1093/jac/dkz434

    Article  CAS  PubMed  Google Scholar 

  39. Hindiyeh M, Smollen G, Grossman Z, Ram D, Davidson Y, Mileguir F et al (2008) Rapid detection of blaKPC carbapenemase genes by real-time PCR. J Clin Microbiol 46:2879–2883. https://doi.org/10.1128/jcm.00661-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lane MC, Simms AN, Mobley HL (2007) Complex interplay between type 1 fimbrial expression and flagellum-mediated motility of uropathogenic Escherichia coli. J Bacteriol 189:5523–5533. https://doi.org/10.1128/jb.00434-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lee JH, Kim YG, Raorane CJ, Ryu SY, Shim J-J, Lee J (2019) The anti-biofilm and anti-virulence activities of trans-resveratrol and oxyresveratrol against uropathogenic Escherichia coli. Biofouling 35:758–767. https://doi.org/10.1080/14756366.2017.1344235

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Soonchunhyang University (Grant No. SCH-20240312) research fund and a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) [NRF-2023R1A2C1003486].

Author information

Authors and Affiliations

Authors

Contributions

HW was responsible for the design and conceptualization of the study, data curation, investigation, validation, and writing—original draft. YB was responsible for the design and conceptualization of the study, supervision, project administration, resources, writing—review and editing, and funding acquisition. All authors have read and approved the final submitted manuscript.

Corresponding author

Correspondence to Yong-Bin Eom.

Ethics declarations

Conflict of interest

The authors have declared no conflict of interest.

Ethics Approval

There are no ethical issues with this paper, and the authors agree to publish it.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, HW., Eom, YB. Antibacterial and Anti-biofilm Effects of Thymoquinone Against Carbapenem-Resistant Uropathogenic Escherichia coli. Indian J Microbiol (2024). https://doi.org/10.1007/s12088-024-01231-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12088-024-01231-8

Keywords

Navigation