Skip to main content
Log in

Cholecystokinin-Induced Duodenogastric Bile Reflux Increases the Severity of Indomethacin-Induced Gastric Antral Ulcers in Re-fed Mice

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background/Aims

We examined the involvement of cholecystokinin (CCK) in the exacerbation of indomethacin (IND)-induced gastric antral ulcers by gastroparesis caused by atropine or dopamine in mice.

Methods

Male mice were fed for 2 h (re-feeding) following a 22-h fast. Indomethacin (IND; 10 mg/kg, s.c.) was administered after re-feeding; gastric lesions were examined 24 h after IND treatment. In another experiment, mice were fed for 2 h after a 22-h fast, after which the stomachs were removed 1.5 h after the end of the feeding period. Antral lesions, the amount of gastric contents, and the gastric luminal bile acids concentration were measured with or without the administration of the pro- and antimotility drugs CCK-octapeptide (CCK-8), atropine, dopamine, SR57227 (5-HT3 receptor agonist), apomorphine, lorglumide (CCK1 receptor antagonist), ondansetron, and haloperidol alone and in combination.

Results

IND produced severe lesions only in the gastric antrum in re-fed mice. CCK-8, atropine, dopamine, SR57227 and apomorphine administered just after re-feeding increased bile reflux and worsened IND-induced antral lesions. These effects were significantly prevented by pretreatment with lorglumide. Although atropine and dopamine also increased the amount of gastric content, lorglumide had no effect on the delayed gastric emptying provoked by atropine and dopamine. Both ondansetron and haloperidol significantly inhibited the increase of bile reflux and the exacerbation of antral lesions induced by atropine and dopamine, respectively, but did not affect the effects of CCK-8.

Conclusions

These results suggest that CCK-CCK1 receptor signal increases bile reflux during gastroparesis induced by atropine and dopamine, exacerbating IND-induced antral ulcers.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Taylor RT, Huskisson EC, Whitehouse GH, Hart FD, Trapnell DH. Gastric ulceration occurring during indomethacin therapy. Br Med J. 1968;4:734–737.

    Article  CAS  PubMed  Google Scholar 

  2. Roth SH, Bennett RE. Nonsteroidal anti-inflammatory drug gastropathy. Recognition and response. Arch Intern Med. 1987;147:2093–2100.

    CAS  PubMed  Google Scholar 

  3. Fries JF, Miller SR, Spitz PW, Williams CA, Hubert HB, Bloch DA. Toward an epidemiology of gastropathy associated with nonsteroidal antiinflammatory drug use. Gastroenterology. 1989;96:647–655.

    Article  CAS  PubMed  Google Scholar 

  4. McCarthy DM. Nonsteroidal antiinflammatory drug-induced ulcers: management by traditional therapies. Gastroenterology. 1989;96:662–674.

    Article  CAS  PubMed  Google Scholar 

  5. Takeuchi K, Ueki S, Okabe S. Importance of gastric motility in the pathogenesis of indomethacin-induced gastric lesions in rats. Dig Dis Sci. 1986;31:1114–1122. https://doi.org/10.1007/BF01300266

    Article  CAS  PubMed  Google Scholar 

  6. Morise Z, Granger DN, Fuseler JW, Anderson DC, Grisham MB. Indomethacin induced gastropathy in CD18, intercellular adhesion molecule 1, or P-selectin deficient mice. Gut. 1999;45:523–528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Satoh H, Inada I, Hirata T, Maki Y. Indomethacin produces gastric antral ulcers in the refed rat. Gastroenterology. 1981;81:719–725.

    Article  CAS  PubMed  Google Scholar 

  8. Satoh H, Guth PH, Grossman MI. Role of food in gastrointestinal ulceration produced by indomethacin in the rat. Gastroenterology. 1982;83:210–215.

    Article  CAS  PubMed  Google Scholar 

  9. Satoh H, Urushidani T. Soluble dietary fiber can protect the gastrointestinal mucosa against nonsteroidal anti-inflammatory drugs in mice. Dig Dis Sci. 2016;61:1903–1914. https://doi.org/10.1007/s10620-016-4086-5

    Article  CAS  PubMed  Google Scholar 

  10. Satoh H, Akiba Y, Urushidani T. Proton pump inhibitors prevent gastric antral ulcers induced by NSAIDs via activation of capsaicin-sensitive afferent nerves in mice. Dig Dis Sci. 2020;65:2580–2594. https://doi.org/10.1007/s10620-020-06157-x

    Article  CAS  PubMed  Google Scholar 

  11. Satoh H, Akiba Y, Urushidani T, Kaunitz JD. Gastroparesis worsens indomethacin-induced gastric antral ulcers by bile reflux via activation of 5-HT3 and dopamine D2 receptors in mice. Dig Dis Sci. 2023;68:3886–3901. https://doi.org/10.1007/s10620-023-08086-x

    Article  CAS  PubMed  Google Scholar 

  12. Gotthard R, Bodemar G, Tjädermo M, Tobiasson P, Walan A. High gastric bile acid concentration in prepyloric ulcer patients. Scand J Gastroenterol. 1985;20:439–446.

    Article  CAS  PubMed  Google Scholar 

  13. Rydning A, Berstad A. Intragastric bile acid concentrations in healthy subjects and in patients with gastric and duodenal ulcer and the influence of fiber-enriched wheat bran in patients with gastric ulcer. Scand J Gastroenterol. 1985;20:801–804.

    Article  CAS  PubMed  Google Scholar 

  14. Duplessis DJ. Pathogenesis of gastric ulceration. Lancet. 1965;1:974–978.

    Article  CAS  PubMed  Google Scholar 

  15. Rhodes J, Barnardo DE, Phillips SF, Rovelstad RA, Hofmann AF. Increased reflux of bile into the stomach in patients with gastric ulcer. Gastroenterology. 1969;57:241–252.

    Article  CAS  PubMed  Google Scholar 

  16. Davenport HW. Destruction of the gastric mucosal barrier by detergents and urea. Gastroenterology. 1968;54:175–181.

    Article  CAS  PubMed  Google Scholar 

  17. Duane WC, Wiegand DM. Mechanism by which bile salt disrupts the gastric mucosal barrier in the dog. J Clin Invest. 1980;66:1044–1049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Armstrong D, Rytina ER, Murphy GM, Dowling RH. Gastric mucosal toxicity of duodenal juice constituents in the rat. Acute studies using ex vivo rat gastric chamber model. Dig Dis Sci. 1994;39:327–339. https://doi.org/10.1007/BF02090205

  19. Müller-Lissner SA, Fimmel CJ, Sonnenberg A et al. Novel approach to quantify duodenogastric reflux in healthy volunteers and in patients with type I gastric ulcer. Gut. 1983;24:510–518.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Sonnenberg A, Müller-Lissner SA, Schattenmann G, Siewert JR, Blum AL. Duodenogastric reflux in the dog. Am J Physiol. 1982;242:G603–G607.

    CAS  PubMed  Google Scholar 

  21. Debas HT, Farooq O, Grossman MI. Inhibition of gastric emptying is a physiological action of cholecystokinin. Gastroenterology. 1975;68:1211–1217.

    Article  CAS  PubMed  Google Scholar 

  22. Moran TH, McHugh PR. Cholecystokinin suppresses food intake by inhibiting gastric emptying. Am J Physiol. 1982;242:R491-497.

    CAS  PubMed  Google Scholar 

  23. Liddle RA, Morita ET, Conrad CK, Williams JA. Regulation of gastric emptying in humans by cholecystokinin. J Clin Invest. 1986;77:992–996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Raybould HE, Taché Y. Cholecystokinin inhibits gastric motility and emptying via a capsaicin-sensitive vagal pathway in rats. Am J Physiol. 1988;255:G242-246.

    CAS  PubMed  Google Scholar 

  25. Scarpignato C, Varga G, Corradi C. Effect of CCK and its antagonists on gastric emptying. J Physiol Paris. 1993;87:291–300.

    Article  CAS  PubMed  Google Scholar 

  26. Wang HH, Portincasa P, Wang DQ. Update on the molecular mechanisms underlying the effect of cholecystokinin and cholecystokinin-1 receptor on the formation of cholesterol gallstones. Curr Med Chem. 2019;26:3407–3423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wormsley KG. Aspects of duodeno-gastric reflux in man. Gut. 1972;13:243–250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Boyle JM, Neiderhiser DH, Dworken HJ. Duodenogastric reflux in patients with gastric ulcer disease. J Lab Clin Med. 1984;103:14–21.

    CAS  PubMed  Google Scholar 

  29. Eyre-Brook IA, Smythe A, Bird NC, Mangnall Y, Johnson AG. Relative contribution of bile and pancreatic juice duodenogastric reflux in gastric ulcer disease and cholelithiasis. Br J Surg. 1987;74:721–725.

    Article  CAS  PubMed  Google Scholar 

  30. Makovec F, Bani M, Cereda R et al. Antispasmodic activity on the gallbladder of the mouse of CR 1409 (lorglumide) a potent antagonist of peripheral CCK. Pharmacol Res Commun. 1987;19:41–51.

    Article  CAS  PubMed  Google Scholar 

  31. Mashige F, Tanaka N, Maki A, Kamei S, Yamanaka M. Direct spectrophotometry of total bile acids in serum. Clin Chem. 1981;27:1352–1356.

    Article  CAS  PubMed  Google Scholar 

  32. Bachy A, Héaulme M, Giudice A et al. SR 57227A: a potent and selective agonist at central and peripheral 5-HT3 receptors in vitro and in vivo. Eur J Pharmacol. 1993;237:299–309.

    Article  CAS  PubMed  Google Scholar 

  33. Depoortère R, Barret-Grévoz C, Bardin L, Newman-Tancredi A. Apomorphine-induced emesis in dogs: differential sensitivity to established and novel dopamine D2/5-HT1A antipsychotic compounds. Eur J Pharmacol. 2008;597:34–38.

    Article  PubMed  Google Scholar 

  34. Feinle C, Read NW. Ondansetron reduces nausea induced by gastroduodenal stimulation without changing gastric motility. Am J Physiol. 1996;271:G591–G597.

    CAS  PubMed  Google Scholar 

  35. Schwalbe T, Kaindl J, Hübner H, Gmeiner P. Potent haloperidol derivatives covalently binding to the dopamine D2 receptor. Bioorg Med Chem. 2017;25:5084–5094.

    Article  CAS  PubMed  Google Scholar 

  36. Imeryüz N, Yeğen BC, Bozkurt A, Coşkun T, Villanueva-Peñacarrillo ML, Ulusoy NB. Glucagon-like peptide-1 inhibits gastric emptying via vagal afferent-mediated central mechanisms. Am J Physiol. 1997;273:G920-927.

    PubMed  Google Scholar 

  37. Wøjdemann M, Wettergren A, Hartmann B, Holst JJ. Glucagon-like peptide-2 inhibits centrally induced antral motility in pigs. Scand J Gastroenterol. 1998;33:828–832.

    Article  PubMed  Google Scholar 

  38. Nishida A, Takinami Y, Yuki H et al. YM022 [(R)-1-[2,3-dihydro-1-(2’-methylphenacyl)-2-oxo-5-phenyl- 1H–1,4-benzodiazepin-3-yl]-3-(3-methylphenyl)urea], a potent and selective gastrin/cholecystokinin-B receptor antagonist, prevents gastric and duodenal lesions in rats. J Pharmacol Exp Ther. 1994;270:1256–1261.

    CAS  PubMed  Google Scholar 

  39. Lang IM, Marvig J, Sarna SK. Comparison of gastrointestinal responses to CCK-8 and associated with vomiting. Am J Physiol. 1988;254:G254-263.

    CAS  PubMed  Google Scholar 

  40. Konturek SJ, Brzozowski T, Pytko-Polonczyk J, Drozdowicz D. Comparison of cholecystokinin, pentagastrin, and duodenal oleate in gastroprotection in rats. Scand J Gastroenterol. 1995;30:620–630.

    Article  CAS  PubMed  Google Scholar 

  41. Hopman WP, Jansen JB, Lamers CB. Effect of atropine on the plasma cholecystokinin response to intraduodenal fat in man. Digestion. 1984;29:19–25.

    Article  CAS  PubMed  Google Scholar 

  42. Zhu XG, Greeley GH Jr, Lewis BG, Lilja P, Thompson JC. Blood-CSF barrier to CCK and effect of centrally administered bombesin on release of brain CCK. J Neurosci Res. 1986;15:393–403.

    Article  CAS  PubMed  Google Scholar 

  43. Konno K, Takahashi-Iwanaga H, Uchigashima M et al. Cellular and subcellular localization of cholecystokinin (CCK)-1 receptors in the pancreas, gallbladder, and stomach of mice. Histochem Cell Biol. 2015;143:301–312.

    Article  CAS  PubMed  Google Scholar 

  44. Wang F, Knutson K, Alcaino C et al. Mechanosensitive ion channel Piezo2 is important for enterochromaffin cell response to mechanical forces. J Physiol. 2017;595:79–91.

    Article  CAS  PubMed  Google Scholar 

  45. Blackshaw LA, Grundy D. Effects of 5-hydroxytryptamine on discharge of vagal mucosal afferent fibres from the upper gastrointestinal tract of the ferret. J Auton Nerv Syst. 1993;45:41–50.

    Article  CAS  PubMed  Google Scholar 

  46. Kato M, Yamada H, Kawata M et al. Immunohistochemical study on gastrin-releasing peptide-containing peripheral nerve fibers in rat, macaque and human. J Auton Nerv Syst. 1991;35:161–168.

    Article  CAS  PubMed  Google Scholar 

  47. Cantor P, Holst JJ, Knuhtsen S, Rehfeld JF. Effect of neuroactive agents on cholecystokinin release from the isolated, perfused porcine duodenum. Acta Physiol Scand. 1987;130:627–632.

    Article  CAS  PubMed  Google Scholar 

  48. Nakano I, Miyazaki K, Funakoshi A, Tateishi K, Hamaoka T, Yajima H. Gastrin-releasing peptide stimulates cholecystokinin secretion in perfused rat duodenum. Regul Pept. 1988;23:153–159.

    Article  CAS  PubMed  Google Scholar 

  49. Weigert N, Li YY, Schick RR, Coy DH, Classen M, Schusdziarra V. Role of vagal fibers and bombesin/gastrin-releasing peptide-neurons in distention-induced gastrin release in rats. Regul Pept. 1997;69:33–40.

    Article  CAS  PubMed  Google Scholar 

  50. Robbins PL, Broadie TA, Sosin H, Delaney JP. Reflux gastritis: the consequences of intestinal juice in the stomach. Am J Surg. 1976;131:23–29.

    Article  CAS  PubMed  Google Scholar 

  51. Kaminishi M, Sadatsuki H, Johjima Y, Oohara T, Kondo Y. A new model for production of chronic gastric ulcer by duodenogastric reflux in rats. Gastroenterology. 1987;92:1913–1918.

    Article  CAS  PubMed  Google Scholar 

  52. Tack J, Camilleri M. New developments in the treatment of gastroparesis and functional dyspepsia. Curr Opin Pharmacol. 2018;43:111–117.

    Article  CAS  PubMed  Google Scholar 

  53. Hornby PJ. Central neurocircuitry associated with emesis. Am J Med. 2001;111(Suppl 8A):106s–112s.

    Article  PubMed  Google Scholar 

  54. Zhong W, Shahbaz O, Teskey G, et al. Mechanisms of Nausea and Vomiting: Current Knowledge and Recent Advances in Intracellular Emetic Signaling Systems. Int J Mol Sci. 2021;22.

  55. Mitchelson F. Pharmacological agents affecting emesis. A review (Part I). Drugs. 1992;43:295–315.

  56. Belkacemi L, Darmani NA. Dopamine receptors in emesis: Molecular mechanisms and potential therapeutic function. Pharmacol Res. 2020;161:105–124.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are greatly indebted to Ms. Fumika Kotera, Ms. Yuri Matsunaga and Ms. Nodoka Moriyama, students in our department, for their technical assistance, and Drs. Y. Amagase and Y. Mizukawa for valuable discussions and suggestions.

Disclaimer

The contents do not represent the views of the Department of Veterans Affairs or the United States Government.

Funding

Doshisha Women’s College of Liberal Arts (TU) and the resources and the use of facilities at the West Los Angeles VAMC, Los Angeles, CA, USA (YA; JDK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Satoh.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Ethical approval

Experimental protocols were approved by the Animal Research Committees at Doshisha Women’s College of Liberal Arts, Kodo, Kyotanabe, Kyoto, Japan (Approval number Y20-009).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Satoh, H., Akiba, Y., Urushidani, T. et al. Cholecystokinin-Induced Duodenogastric Bile Reflux Increases the Severity of Indomethacin-Induced Gastric Antral Ulcers in Re-fed Mice. Dig Dis Sci 69, 1156–1168 (2024). https://doi.org/10.1007/s10620-024-08352-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-024-08352-6

Keywords

Navigation