Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) March 6, 2024

Synthesis and characterization of (Pb1−xSr x )MnBO4: a structural and spectroscopic study

  • Carla M. Uribe-Rincón ORCID logo , Mohammad Mangir Murshed ORCID logo EMAIL logo and Thorsten M. Gesing ORCID logo

Abstract

The presence of ns2 stereo-chemical active lone electron pairs (LEPs) causes asymmetric atomic environments around a given p-block cation, leading to change the crystal chemistry of a respective system. Here we report a series of mullite-type compounds to understand at what extend Sr2+ replaces the stereochemical active Pb2+ cation in (Pb1−xSr x )MnBO4. Each member of the solid solution has been synthesized by conventional solid-state method. The polycrystalline samples are characterized using X-ray powder diffraction followed by Rietveld refinement. Substitution of Pb2+ with Sr2+ leads to contraction of the a lattice parameter with slight elongation in the b and c direction. For a difference of 1 pm of the ionic radius between Sr2+ and Pb2+, the cell volume contracts about 4 % between the end members as the spatial requirement of the LEP activity in the MBO42− channels significantly decreases. Within the solid solution, two distinct Pb/Sr–O2 bond distances significantly differ, which gradually decreases with increasing strontium content leading to a more symmetric coordination around strontium. The calculated BVS of Pb2+/Sr2+ exhibits a linear correlation with the Wang–Liebau eccentricity parameter, indicating to an increased bonding ability cation. The vibrational properties are characterized by both Raman and FTIR spectroscopy, complementing the XPRD results. Electronic band gaps of selected (Pb1−xSr x )MnBO4 samples were obtained from diffuse reflectance spectroscopy data. Additionally, the Sr containing samples show higher thermal stability than the Pb containing counterparts.


Corresponding author: Mohammad Mangir Murshed, Institute of Inorganic Chemistry and Crystallography, University of Bremen, Leobener Straße 7, D-28359 Bremen, Germany; and MAPEX Center for Materials and Processes, University of Bremen, Bibliothekstraße 1, D-28359 Bremen, Germany, E-mail:

Award Identifier / Grant number: Unassigned

Acknowledgments

We gratefully acknowledge financial support from the German Science Foundation (Deutsche Forschungsgemeinschaft, DFG) under grant number MU4415/3-1 as well as for supporting the FTIR spectrometer within a large instrumentation grant INST144/521-1-FUGG. We cordially thank the University of Bremen for their technical and administrative support.

  1. Research ethics: All presented data collected and analyzed are through the voluntary participation of the authors associated with this manuscript. The study was conducted in accordance with the Declaration of Helsinki (as revised in 2013).

  2. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission. Carla M. Uribe-Rincón: Prepared the samples, collected the investigated data and designed the manuscript. M. Mangir Murshed: Contributed to Raman and FTIR data analysis and to writing the manuscript. Thorsten M. Gesing: Contributed to XRD, UV-Vis and TGA/DTG data analysis and to writing the manuscript.

  3. Competing interests: The authors hereby state no conflict of interest.

  4. Research funding: Deutsche Forschungsgemeinschaft (DFG) under grant number MU4415/3-1 and INST144/521-1-FUGG.

  5. Data availability: The raw data can be obtained on request from the corresponding author.

References

1. Becker, P. Borate materials in nonlinear optics. Adv. Mater. 1998, 10, 979–992. https://doi.org/10.1002/(SICI)1521-4095(199809)10:13<979::AID-ADMA979>3.0.CO;2-N.10.1002/(SICI)1521-4095(199809)10:13<979::AID-ADMA979>3.0.CO;2-NSearch in Google Scholar

2. Becker, P. A contribution to borate crystal chemistry: rules for the occurrence of polyborate anion types. Z. Kristallogr. 2001, 216, 523–533. https://doi.org/10.1524/zkri.216.10.523.20368.Search in Google Scholar

3. Mutailipu, M., Poeppelmeier, K. R., Pan, S. Borates: a rich source for optical materials. Chem. Rev. 2021, 121, 1130–1202. https://doi.org/10.1021/acs.chemrev.0c00796.Search in Google Scholar

4. Park, H., Barbier, J. PbGaBO4 an orthoborate with a new structure-type. Acta Crystallograph. Sec. 2001, E57, i82–i84. https://doi.org/10.1107/S1600536801013940.Search in Google Scholar

5. Park, H., Lam, R., Greedan, J. E., Barbier, J. Synthesis, crystal structure, crystal chemistry, and magnetic properties of PbMBO4 (M = Cr, Mn, Fe): a new structure type exhibiting one- dimensional magnetism. Chem. Mater. 2003, 15, 1703–1712. https://doi.org/10.1021/cm0217452.Search in Google Scholar

6. Pankrats, A., Sablina, K., Eremin, M., Balaev, A., Kolkov, M., Tugarinov, V., Bovina, A. Ferromagnetism and strong magnetic anisotropy of the PbMnBO4 orthoborate single crystals. J. Magn. Magn. Mater. 2016, 414, 82–89. https://doi.org/10.1016/j.jmmm.2016.04.042.Search in Google Scholar

7. Head, J., Manuel, P., Orlandi, F., Jeong, M., Lees, M. R., Li, R., Greaves, C. Structural, magnetic, magnetocaloric, and magnetostrictive properties of Pb1-xSrxMnBO4 (x = 0, 0.5, and 1.0). Chem. Mater. 2020, 32, 10184–10199. https://doi.org/10.1021/acs.chemmater.0c03701.Search in Google Scholar

8. Murshed, M. M., Mendive, C. B., Curti, M., Nénert, G., Kalita, P. E., Lipinska, K., Cornelius, A. L., Huq, A., Gesing, T. M. Anisotropic lattice thermal expansion of PbFeBO4: a study by X-ray and neutron diffraction, Raman spectroscopy and DFT calculations. Mater. Res. Bull. 2014, 59, 170–178. https://doi.org/10.1016/j.materresbull.2014.07.005.Search in Google Scholar

9. Wittmann, S., Murshed, M. M., Bilovol, V., Koldemir, A., Pöttgen, R., Nielsen, U. G., Gesing, T. M. Mullite-type EMBO4: synthesis, structural, optical, and vibrational properties of rare tin(II) borates with M = Al and Ga. J. Am. Ceram. Soc. 2024, 107, 1302–1314. https://doi.org/10.1111/jace.19476.Search in Google Scholar

10. Curti, M., Gesing, T. M., Murshed, M. M., Bredow, T., Mendive, C. B. Liebau density vector: a new approach to characterize lone electron pairs in mullite-type materials. Z. Kristallogr. 2013, 228, 629–634; https://doi.org/10.1524/zkri.2013.1686.Search in Google Scholar

11. Gesing, T. M., Mendive, C. B., Curti, M., Hansmann, D., Nénert, G., Kalita, P. E., Lipinska, K. E., Huq, A., Cornelius, A. L., Murshed, M. M. Structural properties of mullite-type Pb(Al1–xMnx)BO4. Z. Kristallogr. 2013, 228, 532–543. https://doi.org/10.1524/zkri.2013.1640.Search in Google Scholar

12. Fischer, R. X., Schneider, H. The mullite-type family of crystal structures. In Mullite; Schneider, H., Komarneni, S., Eds.; Wiley VCH: Weinheim, 2005; pp. 1–46.10.1002/3527607358Search in Google Scholar

13. Murshed, M. M., Fischer, R. X., Gesing, T. M. The role of the Pb2+ lone electron pair for bond valence sum analysis in mullite-type PbMBO4 (M = Al, Mn and Fe) compounds. Z. Kristallogr. 2012, 227, 580–584. https://doi.org/10.1524/zkri.2012.1483.Search in Google Scholar

14. Murshed, M. M., Rusen, A., Fischer, R. X., Gesing, T. M. Transition-metal substitution in PbAlBO4: synthesis, structural and spectroscopic studies of manganese containing phases. Mater. Res. Bull. 2012, 47, 1323–1330. https://doi.org/10.1016/j.materresbull.2012.03.014.Search in Google Scholar

15. Curti, M., Mendive, C. B., Bredow, T., Mangir Murshed, M., Gesing, T. M. Structural, vibrational and electronic properties of SnMBO4 (M = Al, Ga): a predictive hybrid DFT study. J. Phys.: Condens. Matter 2019, 31, 345701. https://doi.org/10.1088/1361-648X/ab20a1.Search in Google Scholar PubMed

16. Gogolin, M., Murshed, M. M., Ende, M., Miletich, R., Gesing, T. M. Uniaxial negative thermal expansion in the mullite- and borax-type PbAlBO4 polymorphs. J. Mater. Sci. 2020, 55, 177–190. https://doi.org/10.1007/s10853-019-04013-6.Search in Google Scholar

17. Hamani, D., Masson, O., Thomas, P. Localization and steric effect of the lone electron pair of the tellurium Te4+ cation and other cations of the p-block elements. A systematic study. J. Appl. Crystallogr. 2020, 53, 1243–1251. https://doi.org/10.1107/S1600576720010031.Search in Google Scholar

18. Wang, X., Liebau, F. The contribution to bond valences by lone electron pairs. In: Materials Research Society Symposia Proceedings, 2004, 365–370.10.1557/PROC-848-FF7.4Search in Google Scholar

19. Shimoni-Livny, L., Glusker, J. P., Bock, C. W. Lone pair functionality in divalent lead compounds. Inorgan. Chem. 1998, 37, 1853–1867. https://doi.org/10.1021/ic970909r.Search in Google Scholar

20. Payne, D. J., Egdell, R. G., Walsh, A., Watson, G. W., Guo, J., Glans, P.-A., Learmonth, T., Smith, K. E. Electronic origins of structural distortions in post-transition metal oxides: experimental and theoretical evidence for a revision of the lone pair model. Phys. Rev. Lett. 2006, 96, 157403. https://doi.org/10.1103/PhysRevLett.96.157403.Search in Google Scholar PubMed

21. Galy, J., Meunier, G., Andersson, s., Astrom, A. Stéréochimie des eléments comportant des paires non liées: Ge (II), As (III), Se(IV), Br (V), Sn (II), Sb(III), Te (IV), I (V), Xe(VI), Tl (I), Pb (II), et Bi (III) (oxydes, fluorures et oxyfluorures). J. Solid State Chem. 1975, 13, 142–159. https://doi.org/10.1016/0022-4596(75)90092-4.Search in Google Scholar

22. Julian Chisolm, J. Lead poisoning. Sci. Am. 1971, 224, 15–23; https://doi.org/10.1038/scientificamerican0271-15.Search in Google Scholar PubMed

23. Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. 1976, A32, 751–767. https://doi.org/10.1107/S0567739476001551.Search in Google Scholar

24. Zhitomirsky, M. E. Enhanced magnetocaloric effect in frustrated magnets. Phys. Rev. B 2003, 67, 104421. https://doi.org/10.1103/PhysRevB.67.104421.Search in Google Scholar

25. Wojdyr, M. Fityk a general-purpose peak fitting program. J. Appl. Crystallogr. 2010, 43, 1126–1128. https://doi.org/10.1107/S0021889810030499.Search in Google Scholar

26. Vegard, L. Die konstitution der mischkristalle und die raumfllung der atome. Z. Phys. 1921, 5, 17–26. https://doi.org/10.1007/BF01349680.Search in Google Scholar

27. Baur, W. Bond length variation and distorted coordination polyhedra in inorganic crystals. Trans. Am. Crystal. Assoc. 1970, 6, 129–155.Search in Google Scholar

28. Brese, N. E., O’Keeffe, M. Bond-valence parameters for solids. Acta Crystallogr. 1991, B47, 192–197. https://doi.org/10.1107/S0108768190011041.Search in Google Scholar

29. Wang, X., Liebau, F. Influence of polyhedron distortions on calculated bond-valence sums for cations with one lone electron pair. Acta Crystallogr. 2006, B63, 216–228. https://doi.org/10.1107/S0108768106055911.Search in Google Scholar PubMed

30. Kirsch, A., Murshed, M. M., Schowalter, M., Rosenauer, A., Gesing, T. M. Nanoparticle precursor into polycrystalline Bi2Fe4O9: an evolutionary investigation of structural, morphological, optical, and vibrational properties. J. Phys. Chem. C 2016, 120, 18831–18840. https://doi.org/10.1021/acs.jpcc.6b04773.Search in Google Scholar

31. Tauc, A. M. J., Menth, A. States in the gap. J. Non Cryst. Solids 1972, 8–10, 569–585. https://doi.org/10.1016/0022-3093(72)90194-9.Search in Google Scholar

32. Souri, D., Tahan, Z. E. A new method for the determination of optical band gap and the nature of optical transitions in semiconductors. Appl. Phys. B 2015, 119, 273–279. https://doi.org/10.1007/s00340-015-6053-9.Search in Google Scholar

33. Makuła, P., Pacia, M., Macyk, W. How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV-Vis spectra. J. Phys. Chem. Lett. 2018, 9, 6814–6817. https://doi.org/10.1021/acs.jpclett.8b02892.Search in Google Scholar PubMed

34. Julien, C. M., Massot, M., Poinsignon, C. Lattice vibrations of manganese oxides. Part I. Periodic structures. Spectrochim. Acta A 2004, 60, 689–700. https://doi.org/10.1016/s1386-1425(03)00279-8.Search in Google Scholar PubMed

35. Chryssikos, G. D., Kapoutsis, J. A., Patsis, A. P., Kamitsos, E. I. A classification of metaborate crystals based on Raman spectroscopy. Spectrochim. Acta 1991, 47A, 1117–1126. https://doi.org/10.1016/0584-8539(91)80043-I.Search in Google Scholar

36. Gielisse, P. J. M., Foster, W. R. The system Al2O3–B2O3. Nature 1962, 195, 69–70. https://doi.org/10.1038/195069a0.Search in Google Scholar

37. Hernández, M. F., Violini, M. A., Serra, M. F., Conconi, M. S., Suarez, G., Rendtorff, N. M. Boric acid (H3BO3) as flux agent of clay-based ceramics, B2O3 effect in clay thermal behavior and resultant ceramics properties. J. Therm. Anal. Calorim. 2020, 139, 1717–1729. https://doi.org/10.1007/s10973-019-08563-4.Search in Google Scholar

38. Asano, M., Kou, T. Thermochemical properties of SrBO2(g) and SrB2O4(s). J. Chem. Thermodyn. 1988, 20, 1149–1156. https://doi.org/10.1016/0021-9614(88)90098-5.Search in Google Scholar

39. Lide, D. R. CRC Handbook of Chemistry and Physics; CRC Press: Boca Raton, FL, 2005. Internet Version, 2005.Search in Google Scholar


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/zkri-2023-0056).


Received: 2023-12-25
Accepted: 2024-02-15
Published Online: 2024-03-06
Published in Print: 2024-03-25

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 27.4.2024 from https://www.degruyter.com/document/doi/10.1515/zkri-2023-0056/html
Scroll to top button