Skip to main content
Log in

On the convergence of the numerical blow-up time for a rescaling algorithm

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Berger and Kohn (Comm. Pure Appl. Math. 41, 841–863 1988) proposed an algorithm to compute approximate blow-up times for those evolution equations whose solutions blow up in a finite time and possess a scaling invariance property. Later, Anada et. al (Japan J. Indust. Appl. Math. 35, 33–47 2018) used this algorithm to compute the blow-up rates of various blow-up problems which turned out to be very effective. The convergence analysis for this algorithm, however, seems to be not well-studied yet. As a result, we will verify in this paper the convergence of the numerical blow-up time computed by this algorithm via a nonlinear ODE blow-up problem. The convergence order of the numerical blow-up times is also verified. It should be noted that the numerical blow-up time is given by an infinite sum, which cannot be done in real computation. We thus propose a criterion to stop the computation and define the time corresponding to the stopping step to be the modified numerical blow-up time. We prove the convergence of the modified numerical blow-up times and show that the convergence order can be kept the same as that of the original numerical blow-up time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

Not applicable since no datasets have been used in the current study.

References

  1. Berger, M., Kohn, R.V.: A rescaling algorithm for the numerical calculation of blowing-up solutions. Comm. Pure Appl. Math. 41, 841–863 (1988)

    Article  MathSciNet  Google Scholar 

  2. Anada, K., Ishiwata, T., Ushijima, T.: A numerical method of estimating blow-up rates for nonlinear evolution equations by using rescaling algorithm. Japan J. Indust. Appl. Math. 35, 33–47 (2018)

    Article  MathSciNet  Google Scholar 

  3. Friedman, A., McLeod, B.: Blow-up of positive solutions of semilinear heat equation. Indiana Univ. Math. J. 34, 425–447 (1985)

    Article  MathSciNet  Google Scholar 

  4. Fujita, H.: On the blowing up of solutions of the Cauchy problem for \(u_t = \Delta u + u^{1+\alpha }\). J. Fac. Sci. Univ. Tokyo Sect. IA 16, 105–113 (1966)

    Google Scholar 

  5. Levine, H.: The role of critical exponents in blowup theorems. SIAM Rev. 32, 262–288 (1990)

    Article  MathSciNet  Google Scholar 

  6. Weissler, F.: Single point blowup of semilinear initial value problems. J. Diff. Eqns. 55, 202–224 (1984)

    Article  ADS  Google Scholar 

  7. John, F.: Blow-up of solutions of nonlinear wave equations in three space dimensions. Manuscripta Math. 28, 235–268 (1979)

    Article  MathSciNet  Google Scholar 

  8. Kato, T.: Blow-up of solutions of some nonlinear hyperbolic equations. Comm. Pure Appl. Math. 32, 501–505 (1980)

    Article  MathSciNet  Google Scholar 

  9. Levine, H.: Instability and nonexistence of global solutions to nonlinear wave equations of the form \(Pu_{tt}=-Au+F(u)\). Trans. Amer. Math. Soc. 192, 1–21 (1974)

    MathSciNet  Google Scholar 

  10. Merle, F., Zaag, H.: Existence and universality of the blow-up profile for the semilinear wave equation in one space dimension. J. Funct. Anal. 253, 43–121 (2007)

    Article  MathSciNet  Google Scholar 

  11. Horstmann, D.: From 1970 until present: the Keller-Segel model in chemotaxis and its consequences. I. Jahresber. Deutsch, Math.-Verein. 105, 103–165 (2003)

    MathSciNet  Google Scholar 

  12. Horstmann, D.: From 1970 until present: the Keller-Segel model in chemotaxis and its consequences. II. Jahresber. Deutsch, Math.-Verein. 106, 51–69 (2004)

    MathSciNet  Google Scholar 

  13. Nagai, T.: Blow-up of radially symmetric solutions to a chemotaxis system. Adv. Math. Sci. Appl. 5, 581–601 (1995)

    MathSciNet  Google Scholar 

  14. Winkler, M.: Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system. J. Math. Pures Appl. 100, 748–767 (2013)

    Article  MathSciNet  Google Scholar 

  15. Merle, F., Raphael, P.: On universality of blow-up profile for \(L^2\) critical nonlinear Schrödinger equation. Invent. Math. 156, 565–672 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  16. Zhang, J.: On the finite-time behaviour for nonlinear Schrödinger equations. Comm. Math. Phys. 162, 249–260 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  17. Anada, K., Ishiwata, K.: Blow-up rates of solutions of initial-boundary value problems for a quasi-linear parabolic equation. J. Diff. Eqns 262(1), 181–271 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  18. Angenent, S.B.: On the formation of singularities in the curve shortening flow. J. Diff. Geom. 33, 601–633 (1991)

    MathSciNet  Google Scholar 

  19. Nakagawa, T.: Blowing up of a finite difference solution to \(u_t = u_{xx} + u^2\). Appl. Mth. Optim. 2, 337–350 (1975)

    Article  Google Scholar 

  20. Abia, L.M., López-Marcos, J.C., Martínez, J.: The Euler method in the numerical integration of reaction-diffusion problems with blow-up. Appl. Numer. Math. 38(3), 287–313 (2001)

    Article  MathSciNet  Google Scholar 

  21. Chen, Y.-G.: Asymptotic behaviours of blowing-up solutions for finite difference analogue of \(u_t = u_{xx}+u^{1+\alpha }\). J. Fac. Sci. Univ. Tokyo 33, 541–574 (1986)

    Google Scholar 

  22. Cho, C.-H., Hamada, S., Okamoto, H.: On the finite difference approximation for a parabolic blow-up problem. Japan J. Indust. Appl. Math. 24, 131–160 (2007)

    Article  MathSciNet  Google Scholar 

  23. Groisman, P.: Totally discrete explicit and semi-implicit Euler methods for a blow-up problem in several space dimensions. Computing 76, 325–352 (2006)

    Article  MathSciNet  Google Scholar 

  24. Stuart, A., Floater, M.: On the computation of blow-up. European J. Appl. Math. 1, 47–71 (1990)

    Article  MathSciNet  Google Scholar 

  25. Bandle, C., Brunner, H.: Blowup in diffusion equations: a survey. J. Comput. Appl. Math. 97, 3–22 (1998)

    Article  MathSciNet  Google Scholar 

  26. Cho, C.-H.: On the computation of the numerical blow-up time. Japan J. Indust. Appl. Math. 30, 331–349 (2013)

    Article  MathSciNet  Google Scholar 

  27. Cho, C.-H.: A numerical algorithm for blow-up problems revisited. Numer. Algor. 75, 675–697 (2017)

    Article  MathSciNet  Google Scholar 

  28. Cho, C.-H.: On the computation for blow-up solutions of the nonlinear wave equation. Numer. Math. 138, 537–556 (2018)

    Article  MathSciNet  Google Scholar 

  29. Caffarelli, L.A., Friedman, A.: Differentiability of the blow-up curve for one dimensional nonlinear wave equations. Arch. Ration. Mech. 91, 83–98 (1985)

    Article  MathSciNet  Google Scholar 

  30. Caffarelli, L.A., Friedman, A.: The blow-up boundary for nonlinear wave equations. Trans. Amer. Math. Soc. 297, 223–241 (1986)

    Article  MathSciNet  Google Scholar 

  31. Merle, F., Zaag, H.: Openness of the set of non-characteristic points and regularity of the blow-up curve for the 1d semilinear wave equation. Comm. Math. Phys. 282, 55–86 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  32. Budd, C.J., Huang, W., Russell, R.D.: Moving mesh methods for problems with blow-up. SIAM J. Sci. Comput. 17, 305–327 (1996)

    Article  MathSciNet  Google Scholar 

  33. Cangiani, A., Georgoulis, E., Kyza, I., S, M.: Adaptivity and blow-up detection for nonlinear evolution problems. SIAM J. Sci. Comput. 38, 3833–3856 (2016)

  34. Hirota, C., Ozawa, K.: Numerical method of estimating the blow-up time and rate of the solution of ordinary differential equations – an application to the blow-up problems of partial differential equations. J. Comput. Appl. Math. 193, 614–637 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  35. Huang, W., Ma, J., Russell, R.D.: A study of moving mesh PDE methods for numerical simulation of blowup in reaction diffusion equations. J. Comput. Phys. 227, 6532–6552 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  36. Takayasu, K., Matsue, K., Sasaki, T., Tanaka, K., Mizuguchi, M., Oishi, S.: Numerical validation of blow-up solutions for ordinary differential equations. J. Comput. Appl. Math. 314, 10–29 (2017)

    Article  MathSciNet  Google Scholar 

  37. Sanz-Serna, J.M., Verwer, J.G.: A study of the recursion \(y_{n+1}=y_n+\tau y^m_n\). J. Math. Anal. Appl. 116, 456–464 (1986)

    Article  MathSciNet  Google Scholar 

  38. Nguyen, V.T.: Numerical analysis of the rescaling method for parabolic problems with blow-up in finite time. Physics D. 339, 49–65 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  39. Benjemaa, M., Jrajria, A., Zaag, H.: Rescaling method for blow-up solutions of nonlinear wave equations. arXiv:2309.05358v1 (2023)

  40. Du, B.-Y.: Convergence for the numerical blow up time of a nonlinear ODE problem. Master Thesis in National Chung Cheng University (2018)

Download references

Funding

The first author is supported by the grant MOST 111-2115-M-110-002-MY2, Taiwan.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed to the theoretical analyses and numerical simulations in the manuscript. C.-H. Cho wrote the main manuscript text. All authors reviewed the final manuscript.

Corresponding author

Correspondence to Chien-Hong Cho.

Ethics declarations

Ethics approval

Not applicable

Consent to participate

Not applicable

Consent for publication

All of the materials are owned by the authors and no permissions are required.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, CH., Wu, JS. On the convergence of the numerical blow-up time for a rescaling algorithm. Numer Algor (2024). https://doi.org/10.1007/s11075-024-01791-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11075-024-01791-2

Keywords

Navigation