Skip to content
Licensed Unlicensed Requires Authentication Published online by De Gruyter March 7, 2024

Effect of zinc doping on structural, bonding nature and magnetic properties of co-precipitated magnesium–nickel ferrites

  • Kannan Balakrishnan Yelai ORCID logo EMAIL logo , Muthaian Charles Robert ORCID logo and Abinaya Nandagopal

Abstract

This paper describes the electronic structure, bonding nature and magnetic properties of Mg0.5Ni0.5−xZn x Fe2O4 (x = 0.1, 0.2, 0.3, 0.4) nano-spinel ferrite samples synthesized by the co-precipitation method. Spinel structure with Fd 3 ̄ m space group is confirmed by XRD analysis with trace amounts of hematite. The results of XRD and FTIR confirm the formation of spinel structure. The estimated average crystallite size ranges from 35 to 59 nm by different methods. The FESEM analysis revealed that the samples have a generally porous aspect. Particle size analysis indicates that the average particle size is approximately 150 nm. Covalent bond exists between the tetrahedral A site – oxygen atom (A–O) and ionic nature exists between the octahedral B site – oxygen atom (B–O) in the two sub lattices of the ferrite unit cell, as determined by the maximum entropy method. Mg0.5Ni0.3Zn0.2Fe2O4 demonstrates high A–O covalency and B–O covalency/ionic boundary based on MEM electron density analysis.


Corresponding author: Kannan Balakrishnan Yelai, Department of Physics, Arumugam Pillai Seethai Ammal College, Tiruppattur 630211, Tamil Nadu, India, E-mail:

  1. Research ethics: Not applicable.

  2. Author contributions: Y.B. Kannan: Conceptualization, Methodology, Writing original Draft, Executing graphical techniques. M. Charles Robert: Supervision, Investigation, Formal analysis, Writing review and Validation. N. Abinaya: Electronic artwork and editing.

  3. Competing interests: The authors have declared that there is no conflict of interest.

  4. Research funding: No funding agency is involved in this work.

  5. Data availability: The authors declare that all the experimental and computational data for the present research article are available and can be obtained from the corresponding author with a request.

References

[1] Somnath, et al.., “Structural, magnetic and Mössbauer studies of Nd-doped Mg-Mn ferrite nanoparticles,” J. Magn. Magn. Mater., vol. 444, pp. 77–86, 2017, https://doi.org/10.1016/j.jmmm.2017.08.017.Search in Google Scholar

[2] S. Ramesh, B. Dhanalakshmi, B. ChandraSekhar, P. S. V. SubbaRao, and B. Parvatheeswara Rao, “Effect of Mn/Co substitutions on the resistivity and dielectric properties of nickel-zinc ferrites,” Ceram. Int., vol. 42, no. 8, pp. 9591–9598, 2016, https://doi.org/10.1016/j.ceramint.2016.03.043.Search in Google Scholar

[3] A. Zeng and J. Yuan, “Study of sol-gel auto-combustion method prepared Ni0.6-xZn0.4MgxFe2O4,” Adv. Mater. Res., vols. 463–464, pp. 052–1056, 2012.10.4028/www.scientific.net/AMR.463-464.1052Search in Google Scholar

[4] T. Tatarchuk, M. Bououdina, J. Judith Vijaya, and L. John Kennedy, “Spinel ferrite nanoparticles: synthesis, crystal structure, properties, and perspective applications,” in Nanophysics, Nanomaterials, Interface Studies and Applications. NANO 2016. Springer Proceedings in Physics, vol. 195, O. Fesenko and L. Yatsenko, Eds., 2017, pp. 305–325.10.1007/978-3-319-56422-7_22Search in Google Scholar

[5] R. Sharma, P. Thakur, P. Sharma, and V. Sharma, “Ferrimagnetic Ni2+ doped Mg–Zn spinel ferrite nanoparticles for high density information Storage,” J. Alloys Compd., vol. 704, pp. 7–17, 2017, https://doi.org/10.1016/j.jallcom.2017.02.021.Search in Google Scholar

[6] C. Naidu Kadiyala and M. Wuppulluri, “Microwave processed bulk and nano NiMg ferrites: a comparative study on X-band electromagnetic interference shielding properties,” Mater. Chem. Phys., vol. 187, pp. 164–176, 2017, https://doi.org/10.1016/j.matchemphys.2016.11.062.Search in Google Scholar

[7] F. A. Hezam, N. O. Khalifa, O. Nur, and M. A. Mustafa, “Synthesis and magnetic properties of Ni0.5MgxZn0.5-xFe2O4 (0.0 ≤ x ≤ 0.5) nanocrystalline spinel ferrites,” Mater. Chem. Phys., vol. 257, p. 123770, 2021, https://doi.org/10.1016/j.matchemphys.2020.123770.Search in Google Scholar

[8] S. AshimaDagar, K. Sonia, S. Khasa, and Krittika, “Structural and electrical properties of Ni-Mg-Zn spinel ferrites,” AIP Conf. Proc., vol. 2265, no. 1, p. 030154, 2020. https://doi.org/10.1063/5.0016667.Search in Google Scholar

[9] M. A. Gabal, Y. M. AlAngari, and H. M. Zaki, “Structural, magnetic and electrical characterization of Mg–Ni nano-crystalline ferrites prepared through egg-white precursor,” J. Magn. Magn. Mater., vol. 363, pp. 6–12, 2014, https://doi.org/10.1016/j.jmmm.2014.03.007.Search in Google Scholar

[10] M. Airimioaei, et al.., “Structural investigation and functional properties of MgxNi1–xFe2O4 ferrites,” J. Am. Ceram. Soc., vol. 97, no. 2, pp. 519–526, 2014, https://doi.org/10.1111/jace.12683.Search in Google Scholar

[11] E. E. Ateia, A. A. H. El-Bassuony, G. Abdellatif, and A. T. Mohamed, “The impact of Ni substitution on the structural and magnetic properties of Mg nano-ferrite,” Silicon, vol. 10, no. 4, pp. 1687–1696, 2018. https://doi.org/10.1007/s12633-017-9653-7.Search in Google Scholar

[12] S. Kumar, R. R. Singh, and P. B. Barman, “Reitveld refinement and derivative spectroscopy of nanoparticles of soft ferrites (MgNiFe),” J. Inorg. Organomet. Polym. Mater., vol. 31, no. 2, pp. 528–541, 2021. https://doi.org/10.1007/s10904-020-01764-7.Search in Google Scholar

[13] P. Tiwari, R. Verma, S. N. Kane, T. Tatarchuk, and F. Mazaleyrat, “Effect of Zn addition on structural, magnetic properties and anti-structural modeling of magnesium-nickel nano ferrites,” Mater. Chem. Phys., vol. 229, pp. 78–86, 2019, https://doi.org/10.1016/j.matchemphys.2019.02.030.Search in Google Scholar

[14] A. M. Gismelseed, et al.., “The effect of Zn substitution on the structure and magnetic properties of magnesium nickel ferrite,” Hyperfine Interact., vol. 239, p. 16, 2018, https://doi.org/10.1007/s10751-018-1492-4.Search in Google Scholar

[15] N. Hooda, R. Sharma, A. Hooda, S. Khasa, Sonia, and K. Dembla, “Compositional variation of dielectric and magnetic parameters in Ni0.5MgxZn0.5-xFe2O4 spinel ferrites,” J. Mater. Sci. Mater. Electron., vol. 33, no. 12, pp. 1–13, 2022, https://doi.org/10.1007/s10854-022-07755-3.Search in Google Scholar

[16] Y. R. Babu, “Effect of Mg substitution on the magnetic properties of Ni–Zn ferrites,” Pramana – J. Phys., vol. 88, no. 6, p. 88, 2017. https://doi.org/10.1007/s12043-017-1393-0.Search in Google Scholar

[17] A. K. M. Akther Hossain, T. S. Biswas, T. Yanagida, H. Tanaka, H. Tabata, and T. Kawai, “Investigation of structural and magnetic properties of polycrystalline Ni0.50Zn0.50-xMgxFe2O4 spinel ferrites,” Mater. Chem. Phys., vol. 120, no. 2–3, pp. 461–467, 2010. https://doi.org/10.1016/j.matchemphys.2009.11.040.Search in Google Scholar

[18] M. N. Akhtar, A. Rahman, A. B. Sulong, and M. A. Khan, “Structural, spectral, dielectric and magnetic properties of Ni0.5MgxZn0.5-xFe2O4 nanosized ferrites for microwave absorption and high frequency applications,” Ceram. Int., vol. 43, no. 5, pp. 4357–4365, 2017. https://doi.org/10.1016/j.ceramint.2016.12.081.Search in Google Scholar

[19] N. Kavitha and P. Manohar, “Magntic and Electrical properties of magnesium substituted Ni-Zn ferrites,” J. Supercond. Nov. Magnetism, vol. 29, no. 8, pp. 2151–2157, 2016. https://doi.org/10.1007/s10948-016-3524-0.Search in Google Scholar

[20] N. Singh, A. Agarwal, S. Sanghi, and P. Singh, “Effect of magnesium substitution on dielectric and magnetic properties of Ni–Zn ferrite,” Phys. B Condens. Matter, vol. 406, no. 3, pp. 687–692, 2011, https://doi.org/10.1016/j.physb.2010.11.087.Search in Google Scholar

[21] D. R. S. Gangaswamy, M. C. Varma, S. Bharadwaj, K. Sambasiva Rao, and K. H. Rao, “Comparison study of structural and magnetic properties of magnesium-substituted nickel–zinc ferrites synthesized by solid-state and sol–gel routes,” J. Supercond. Nov. Magnetism, vol. 28, no. 12, pp. 3599–3606, 2015. https://doi.org/10.1007/s10948-015-3188-1.Search in Google Scholar

[22] M. A. Gabal and W. A. Bayoumy, “Effect of composition on structural and magnetic properties of nanocrystalline Ni0.8-xZn0.2MgxFe2O4 ferrite,” Polyhedron, vol. 29, no. 13, pp. 2569–2573, 2010. https://doi.org/10.1016/j.poly.2010.04.019.Search in Google Scholar

[23] Y. Zhang, A. Sun, and Z. Suonan, “The structural, magnetic, and optical properties of Ni– Mg–Zn ferrite prepared with different complexing agents via sol–gel method,” J. Mater. Sci.: Mater. Electron., vol. 32, no. 5, pp. 13350–13368, 2021. https://doi.org/10.1007/s10854-021-05914-6.Search in Google Scholar

[24] P. Dhiman, T. Mehta, A. Kumar, G. Sharma, M. Naushad Tansir Ahamad, and G. T. Mola, “Mg0.5NixZn0.5-xFe2O4 (x=0.1-0.5 in steps of 0.1) spinel as a sustainable magnetic nano-photocatalyst with dopant driven band shifting and reduced recombination for visible and solar degradation of reactive blue-19,” Adv. Powder Technol., vol. 31, no. 12, pp. 4585–4597, 2020, https://doi.org/10.1016/j.apt.2020.10.010.Search in Google Scholar

[25] R. Sharma, P. Thakur, M. Kumar, P. Sharma, and V. Sharma, “Nanomaterials for high frequency device and photocatalytic applications: Mg-Ni-Zn ferrites,” J. Alloys Compd., vol. 746, pp. 532–539, 2018, https://doi.org/10.1016/j.jallcom.2018.02.287.Search in Google Scholar

[26] N. Kaur and B. Chudasama, “Structure induced tunable magnetic properties of Zn substituted Mn1-xZnxFe2O4 (x 0-1) NPs,” Micro & Nano Lett., vol. 12, no. 3, pp. 151–156, 2017, https://doi.org/10.1049/mnl.2016.0555.Search in Google Scholar

[27] L. Yu and A. Sun, “Influence of different complexing agents on structural, morphological, and magnetic properties of Mg–Co ferrites synthesized by sol–gel auto-combustion method,” J. Mater. Sci.: Mater. Electron., vol. 32, no. 1, pp. 10549–10563, 2021. https://doi.org/10.1007/s10854-021-05711-1.Search in Google Scholar

[28] S. A. V. Prasad, et al.., “Synthesis of MFe2O4 (M= Mg2+, Zn2+, Mn2+) spinel ferrites and their structural, elastic and electron magnetic resonance properties,” Ceram. Int., vol. 44, no. 9, pp. 10517–10524, 2018. https://doi.org/10.1016/j.ceramint.2018.03.070.Search in Google Scholar

[29] M. Kaur, P. Jain, and M. Singh, “Studies on structural and magnetic properties of ternary cobalt magnesium zinc (CMZ) Co0.6-xMgxZn0.4Fe2O4 (X=0, 0.2, 0.4, 0.6) ferrite nanoparticles,” Mater. Chem. Phys., vol. 162, pp. 332–339, 2015, https://doi.org/10.1016/j.matchemphys.2015.05.075.Search in Google Scholar

[30] R. Sharma, P. Thakur, M. Kumar, P. B. Barman, P. Sharma, and V. Sharma, “Enhancement in A-B super-exchange interaction with Mn2+ substitution in Mg-Zn ferrites as a heating source in hyperthermia applications,” Ceram. Int., vol. 43, no. 16, pp. 13661–13669, 2017, https://doi.org/10.1016/j.ceramint.2017.07.076.Search in Google Scholar

[31] M. G. Naseri, M. H. M. Ara, E. B. Saion, and A. H. Sharri, “Superparamagnetic magnesium ferrite nanoparticles fabricated by a simple thermal-treatment method,” J. Magn. Magn. Mater., vol. 350, pp. 141–147, 2014, https://doi.org/10.1016/j.jmmm.2013.08.032.Search in Google Scholar

[32] M. A. Ali, M. N. I. Khan, F. U. Z. Chowdhury, M. M. Hossain, S. M. Hoque, and M. M. Uddin, “Impact of Sn4+ substitution in Mg–Zn ferrites: deciphering the structural, morphological, dielectric, electrical and magnetic properties,” Mater. Chem. Phys., vol. 263, p. 124357, 2021, https://doi.org/10.1016/j.matchemphys.2021.124357.Search in Google Scholar

[33] C.-Y. Tsay, Y.-C. Chiu, and Y.-K. Tseng, “Investigation on structural, magnetic, and FMR properties for hydrothermally-synthesized magnesium-zinc ferrite nanoparticles,” Phys. B Condens. Matter, vol. 570, pp. 29–34, 2019, https://doi.org/10.1016/j.physb.2019.05.037.Search in Google Scholar

[34] M. H. Rietveld, “A profile refinement method for nuclear and magnetic structures,” J. Appl. Crystallogr., vol. 2, no. 2, pp. 65–71, 1969. https://doi.org/10.1107/s0021889869006558.Search in Google Scholar

[35] V. Petricek, M. Dusek, and L. Palatinus, “Crystallographic computing system JANA2006: general features,” Z. Kristallogr., vol. 229, no. 5, pp. 345–352, 2014, https://doi.org/10.1515/zkri-2014-1737.Search in Google Scholar

[36] M. Thavarani, M. C. Robert, N. Pavithra, S. Balaji Prasath, Y. B. Kannan, and A. Ansar Ahamed, “An experimental analysis of the correlation between electronic structure and room temperature magnetism in Cu-doped CoFe2O4 spinel ferrite,” Appl. Phys. A, vol. 128, no. 8, p. 659, 2022. https://doi.org/10.1007/s00339-022-05808-2.Search in Google Scholar

[37] S. M. Patange, S. E. Shirsath, S. S. Jadhav, and K. M. Jadhav, “Cation distribution study of nanocrystalline NiFe2−xCrxO4 ferrite by XRD, magnetization and Mössbauer spectroscopy,” Phys. Status Solidi A, vol. 209, no. 2, pp. 347–352, 2012. https://doi.org/10.1002/pssa.201127232.Search in Google Scholar

[38] M. Johurul Islam, et al.., “Influence of Mg substitution on structural, magnetic and electrical properties of Zn-Cu ferrites,” J. Mater. Sci. Mater. Electron., vol. 32, no. 2, pp. 26173–26180, 2021. https://doi.org/10.1007/s10854-021-06617-8.Search in Google Scholar

[39] S. Debnath and R. Das, “Cobalt doping on nickel ferrite nanocrystals enhances the micro-structural and magnetic properties: shows a correlation between them,” J. Alloys Compd., vol. 852, p. 156884, 2021, https://doi.org/10.1016/j.jallcom.2020.156884.Search in Google Scholar

[40] Y. B. Kannan, R. Saravanan, N. Srinivasan, and I. Ismail, “Sintering effect on structural, magnetic and optical properties of Ni0.5Zn0.5Fe2O4 ferrite nano particles,” J. Magn. Magn. Mater., vol. 423, no. 2, pp. 217–225, 2017. https://doi.org/10.1016/j.jmmm.2016.09.038.Search in Google Scholar

[41] S. G. Bachhav, R. S. Patil, P. B. Ahirrao, A. M. Patil, and D. R. Patil, “Microstructure and magnetic studies of Mg-Ni-Zn-Cu ferrites,” Mater. Chem. Phys., vol. 129, no. 3, pp. 1104–1109, 2011. https://doi.org/10.1016/j.matchemphys.2011.05.067.Search in Google Scholar

[42] R. Saravanan, Y. B. Kannan, N. Srinivasan, and I. Ismail, “Study of various sites interactions using maximum entropy method on mechanically alloyed Ni0.5Zn0.5Fe2O4 nano ferrite particles sintered from 1100 °C to 1400 °C,” J. Supercond. Nov. Magnetism, vol. 30, no. 2, pp. 407–417, 2017.10.1007/s10948-016-3736-3Search in Google Scholar

[43] M. A. Islam, et al.., “Structural characteristics, cation distribution and elastic properties of Cr3+ substituted stoichiometric and non-stoichiometric cobalt ferrites,” RSC Adv., vol. 12, no. 14, pp. 8502–8519, 2022. https://doi.org/10.1039/D2RA02223K.Search in Google Scholar PubMed PubMed Central

[44] P. Bindu and S. Thomas, “Estimation of lattice strain in ZnO nanoparticles: X-ray peak profile analysis,” J. Theor. Appl. Phys., vol. 8, no. 4, pp. 123–134, 2014. https://doi.org/10.1007/s40094-014-0141-9.Search in Google Scholar

[45] S. Dolabella, A. Borzì, D. Alex, and A. Neels, “Lattice strain and defects analysis in nanostructured semiconductor materials and devices by high-resolution X-ray diffraction: theoretical and practical aspects,” Small Methods, vol. 6, no. 2, p. 2100932, 2022. https://doi.org/10.1002/smtd.202100932.Search in Google Scholar PubMed

[46] C. Murugesan and G. Chandrasekaran, “Impact of Gd3+-substitution on the structural, magnetic and electrical properties of cobalt ferrite nanoparticles,” RSC Adv., vol. 5, no. 90, pp. 73714–73725, 2015. https://doi.org/10.1039/C5RA14351A.Search in Google Scholar

[47] K. B. Modi, J. D. Gajera, M. P. Pandya, G. Vora, and H. H. Joshi, “Far-infrared spectral studies of magnesium and aluminum co-substituted lithium ferrites,” Pramana – J. Phys., vol. 62, no. 5, pp. 1173–1180, 2004. https://doi.org/10.1007/BF02705264.Search in Google Scholar

[48] K. Momma, T. Ikeda, A. A. Belik, and F. Izumi, “Dysnomia, a computer program for maximum-entropy method (MEM) analysis and its performance in the MEM-based pattern fitting,” Powder Diffr., vol. 28, no. 3, p. 184, 2013. https://doi.org/10.1017/s088571561300002x.Search in Google Scholar

[49] K. Momma and F. Izumi, “VESTA: a three-dimensional visualization system for electronic and structural analysis,” J. Appl. Crystallogr., vol. 41, no. 3, p. 653, 2008. https://doi.org/10.1107/s0021889808012016.Search in Google Scholar

[50] N. Abinaya, M. C. Robert, N. Srinivasan, and S. Saravanakumar, “Electron density mapping and bonding in Mn doped CoFe2O4 using XRD, and its correlation with room temperature optical and magnetic properties,” J. Magn. Magn. Mater., vol. 580, p. 170938, 2023, https://doi.org/10.1016/j.jmmm.2023.170938.Search in Google Scholar

[51] E. Arul, K. Sivaji, and P. Manohar, “Effect of bismuth on copper zinc ferrites for photocatalytic applications,” J. Aust. Ceram. Soc., vol. 56, no. 3, pp. 811–817, 2020. https://doi.org/10.1007/s41779-019-00400-z.Search in Google Scholar

[52] Y. B. Kannan, R. Saravanan, N. Srinivasan, K. Praveena, and K. Sadhana, “Synthesis and characterization of some ferrite nanoparticles prepared by co-precipitation method,” J. Mater. Sci. Mater. Electron., vol. 27, no. 11, pp. 12000–12008, 2016, https://doi.org/10.1007/s10854-016-5347-y.Search in Google Scholar


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/zna-2023-0323).


Received: 2023-11-22
Accepted: 2024-02-05
Published Online: 2024-03-07

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 3.5.2024 from https://www.degruyter.com/document/doi/10.1515/zna-2023-0323/html
Scroll to top button