Skip to main content

Advertisement

Log in

Genetic diversity of Thailand reserved mulberry germplasm based on morphological characteristics and newly developed EST-SSR and SRAP markers

  • Research Report
  • Published:
Horticulture, Environment, and Biotechnology Aims and scope Submit manuscript

Abstract

Mulberry (Morus L.) is an important crop for the sericulture industry, serving as the primary food source for the silkworm Bombyx mori L. Thailand has a long history of practicing sericulture and has imported and improved upon many indigenous cultivars to create new hybrid offspring. It is crucial to understand the genetic divergence of these accessions for their conservation and utilization in selection and breeding. In this study, 85 representative mulberry accessions in Thailand were observed morphology and analyzed for their genetic relationships using SRAP and EST-SSR markers. The findings indicate that the morphological traits of Thai mulberry are distinctive enough to differentiate between M. macroura Miq. and wild hybrid mulberry, and a group consisting of M. alba L. and M. australis Poir., and their hybrids. 12 SRAP primer combinations produced 193 polymorphic amplicons with an average of 17.0 bands per primer set, and the mean of PIC was 0.259. Eleven novel EST-SSR primers generated 35 amplicons with an average of 3.2 alleles per primer set, and the average PIC was 0.139. The dendrogram obtained using the UPGMA algorithm in R studio showed that the wild and wild hybrid mulberry were genetically distant from the domesticated species studied here. These findings have important implications for the characterization, improvement, molecular systematics, and conservation of Thai mulberry germplasm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  • Adeduntan SA (2015) Influence of different varieties of mulberry leaves (Morus alba) on growth and cocoon performance of biovoltine strain of silkworm (Bombyx mori). Int J Biol Chem Sci 9(2):751–757

    Article  CAS  Google Scholar 

  • Aggarwal RK, Udaykumar D, Hendre PS, Sarkar A, Singh LI (2004) Isolation and characterization of six novel microsatellite markers for mulberry (Morus indica). Mol Ecol Notes 4(3):477–479. https://doi.org/10.1111/j.1471-8286.2004.00718.x

    Article  CAS  Google Scholar 

  • Aseny N, Syamsuardi S, Nurainas N. (2021). Molecular characterization of andalas treedioecious plant [Morus macroura Miq.] using SRAP marker. IOP Conference Series: Earthand Environmental Science 741(1): 1–7. https://doi.org/10.1088/1755-1315/741/1/012050

  • Bajpai PK, Warghat AR, Sharma RK, Yadav A, Thakur AK, Srivastava RB, Stobdan T (2014) Structure and genetic diversity of natural populations of Morus alba in the Trans-Himalayan Ladakh region. Biochem Genet 52:137–152

    Article  CAS  PubMed  Google Scholar 

  • Caccam MM, Mendoza T (2015) Improving mulberry (Morus alba L.) leaf yield and quality to increase silkworm productivity in Northern Luzon. Philippines 37(1):1–25

    Google Scholar 

  • Chang JC, Liou YT (2006) Growth, physiology and cultivation of mulberry in Taiwan. Agricultural World 275:46–54

    Google Scholar 

  • Chuprayoon, S. (2014). Thai Silk Product Development: Knowledge of Thai silk product development (p. 1). Office of Sericulture Research and Development, The Queen Sirikit Department of Sericulture, Thailand.

  • Dandin SB (1998) Mulberry a versatile biosource in the service of mankind. Acta Sericologica Sinica 24:109–113

    Google Scholar 

  • Dillon N, Innes D, Bally I, Wright C, Devitt L, Dietzgen R (2014) Expressed sequence tag-simple sequence repeat (EST-SSR) marker resources for diversity analysis of mango (Mangifera indica L.). Diversity 6(1):72–87. https://doi.org/10.3390/d6010072

    Article  CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Ellis JR, Burke JM (2007) EST-SSRs as a resource for population genetic analyses. Heredity (edinb) 99(2):125–132. https://doi.org/10.1038/sj.hdy.6801001

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Gómez B, González-Alvarez H, Martínez-Mora C, Cenis L, Perez-Hernandez CDM, Martínez-Zubiaur Y, Martínez-Gómez P (2019) The molecular characterization of an extended mulberry germplasm by SSR markers. Genetika 51(2):389–403. https://doi.org/10.2298/gensr1902389g

    Article  Google Scholar 

  • Graham J, Smith K, MacKenzie K, Jorgenson L, Hackett C, Powell W (2004) The construction of a genetic linkage map of red raspberry (Rubus idaeus subsp. idaeus) based on AFLPs, genomic-SSR and EST-SSR markers. Theor Appl Genet 109:740–749

    Article  CAS  PubMed  Google Scholar 

  • Gupta PK, Rustgi S, Sharma S, Singh R, Kumar N, Balyan H (2003) Transferable EST-SSR markers for the study of polymorphism and genetic diversity in bread wheat. Mol Genet Genom 270(4):315–323

    Article  CAS  Google Scholar 

  • Hirano H (1982) Varietal differences of leaf protein profiles in mulberry. Phytochemistry 21(7):1513–1518

    Article  CAS  Google Scholar 

  • Hou YJ (1994) Mulberry breeding. Sericulture Deparment, Zhejiang Agricultural University, Hangzhou, China, p 4

    Google Scholar 

  • Hu D, Zhang P, Sun YL, Zhang S, Wang Z, Chen C (2014) Genetic relationship in mulberry (Morus L.) inferred through PCR-RFLP and trnD-trnT sequence data of chloroplast DNA. Biotechnol Biotechnol Equip 28(3):425–430. https://doi.org/10.1080/13102818.2014.928980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu D, Zhang P, Hao W, Sun Y, Wang Z, Chen C (2015) SRAP analysis on the genetic relationships of 24 mulberry (Morus L.) accessions in the lower regions of the Yellow River. Genet Resour Crop Evolut 62(1):13–19. https://doi.org/10.1007/s10722-014-0215-1

    Article  CAS  Google Scholar 

  • Huang Y, Li F, Chen KS (2010) Analysis of diversity and relationships among Chinese orchid cultivars using EST-SSR markers. Biochem Syst Ecol 38:93–102

    Article  Google Scholar 

  • Huang LK, Bughrara S, Zhang XQ, Bales-Arcelo CJ, Bin X (2011) Genetic diversity of switchgrass and its relative species in Panicum genus using molecular markers. Biochem Syst Ecol 39(4–6):685–693

    Article  CAS  Google Scholar 

  • Jongruaysup B, Prueapan K, Boonphol S, Srijakkoat M, Kongpua N, Wongwarat T, Yothalak R, Jamkratoke J, Chantaracharoen N, Pratumma P. (2020). DNA sequence analysis of cpDNA trnL-trnF an nrDNA ITS in conservation mulberry (Morus spp.) In: The Queen Sirikit Department of Sericulture (ed). Sericulture research report 2020: 1–25

  • Kafkas S, Ozkan H, Sutyemez M (2005) DNA polymorphism and assessment of genetic relationships in walnut genotypes based on AFLP and SAMPL markers. J Am Soc Hortic Sci 130(4):585–590

    Article  CAS  Google Scholar 

  • Kafkas S, Özgen M, Doğan Y, Özcan B, Ercişli S, Serce S (2008) Molecular characterization of mulberry accessions in Turkey by AFLP markers. J Am Soc Hortic Sci 133(4):593–597

    Article  Google Scholar 

  • Kar PK, Srivastava PP, Awasthi AK, Urs SR (2007) Genetic variability and association of ISSR markers with some biochemical traits in mulberry (Morus spp.) genetic resources available in India. Tree Genet Genomes 4(1):75–83. https://doi.org/10.1007/s11295-007-0089-x

    Article  Google Scholar 

  • Li G, Quiros CF (2001) Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor Appl Genet 103:455–461

    Article  CAS  Google Scholar 

  • Li D, Cui H, Wang C, Ling S, Huang Z, Zhang H (2011) A fast and effective method to perform paternity testing for Wolong giant pandas. Chin Sci Bull 56(24):2559–2564

    Article  Google Scholar 

  • Lin ZX, Zhang XL, Nie YC (2003) Construction of a genetic linkage map for cotton based on SRAP. Chin Sci Bull 48:2063–2068

    Article  CAS  Google Scholar 

  • Lu JJ, Wang S, Zhao HY, Liu JJ, Wang HZ (2012) Genetic linkage map of EST-SSR and SRAP markers in the endangered Chinese endemic herb Dendrobium (Orchidaceae). Genet Mol Res 11(4):4654–4667. https://doi.org/10.4238/2012.December.21.1

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Zhang C, Li X, Liang Y, Wang Y, Li W (2020) Development of EST-SSR markers and their application in the analysis of the genetic diversity of Sophora japonica Linn. Trees 34:1147–1156

    Article  CAS  Google Scholar 

  • Mathithumilan B, Kadam NN, Biradar J, Reddy SH, Ankaiah M, Narayanan MJ, Makarla U, Khurana P, Sreeman SM (2013) Development and characterization of microsatellite markers for Morus spp. and assessment of their transferability to other closely related species. BMC Plant Biol 13:1–21

    Article  Google Scholar 

  • Mathithumilan B, Sajeevan RS, Biradar J, Madhuri T, Kadam NN, Sreeman SM (2016) Development and characterization of genic SSR markers from Indian mulberry transcriptome and their transferability to related species of Moraceae. PLoS ONE 11(9):e0162909. https://doi.org/10.1371/journal.pone.0162909

    Article  CAS  Google Scholar 

  • Naik VG, Dandin SB (2006) Identification of duplicate collections in the mulberry (Morus spp.) germplasm using RAPD analysis. Indian Journal of Genetics 66(4):287–292

    CAS  Google Scholar 

  • Nepal MP, Ferguson CJ (2012) Phylogenetics of Morus (Moraceae) inferred from ITS and trnL-trnF sequence data. Syst Bot 37(2):442–450. https://doi.org/10.1600/036364412X635485

    Article  Google Scholar 

  • Nepal MP, Purintun JM (2021) Systematics of the genus Morus L. (Moraceae): taxonomy, phylogeny and potential responses to climate change. In: Razdan MK, Thomas D (eds) Genetic improvement of mulberry in context of climate change. CRC Press, Boca Raton

    Google Scholar 

  • Orhan E, Ercisli S, Yildirim N, Agar G (2007) Genetic variations among mulberry genotypes (Morus alba) as revealed by random amplified polymorphic DNA (RAPD) markers. Plant Syst Evol 265(3–4):251–258. https://doi.org/10.1007/s00606-007-0525-2

    Article  CAS  Google Scholar 

  • Pan YL (2000) Progress and prospect of germplasm resources and breeding of mulberry. Acta Sericologica Sin 26(Suppl):1–8

    Google Scholar 

  • Sa P, Na F, Meili G, Yuehua C, Qinghua G (2008) Genetic variation of Carthamus tinctorius L. and related species revealed by SRAP analysis. Biochem Syst Ecol 36:531–538

    Article  Google Scholar 

  • Shabir AW, Bhat MA, Malik GN, Kamili AS, Mir MR, Bhat SA, Wani N, Razvi SM, Akhtar S, Bhat KA (2010) Molecular markers and their role in mulberry improvement. Int J Curr Res 4:20–24

    Google Scholar 

  • Sharma A, Sharma R, Machii H (2000) Assessment of genetic diversity in a Morus germplasm collection using fluorescence-based AFLP markers. Theor Appl Genet 101:1049–1055

    Article  CAS  Google Scholar 

  • Song G, Li M, Xiao H, Wang X, Tang R, Xia H, Zhao CZ, Bi Y (2010) EST sequencing and SSR marker development from cultivated peanut (Arachis hypogaea L.). Electron J Biotechnol 13:7–8

    Article  Google Scholar 

  • Suriyawanakul M, Sarnchantuk L, Luemunkong S, Mathintarangson P, Worawongsomkam K, Phicharachot T, Boonbunda, P, Jantasuriyarat C. (2020). Study of expression genes involved in proline synthesis for assisted selection of mulberry cultivars in water stress. In: The Queen Sirikit Department of Sericulture (ed) Sericulture research report 2020: 26–41

  • Suzuki R, Terada Y, Shimodaira H (2017) Pvclust: hierarchical clustering with p values via multiscale bootstrap resampling. R package version 1.3–2. http:// CRAN.R- proje ct. org/ packa ge= pvclu st. Accessed 15 Jan. 2023

  • The QueenSirikit Department of Sericulture. (2021). Infomation of mulberry cultivars. Retrieved 31 Jan. 2021

  • Ul Haq S, Kumar P, Singh RK, Verma KS, Bhatt R, Sharma M, Kachhwaha S, Kothari SL (2016) Assessment of functional EST-SSR markers (Sugarcane) in cross-species transferability, genetic diversity among Poaceae plants, and bulk segregation analysis. Genet Res Int 2016:7052323. https://doi.org/10.1155/2016/7052323

    Article  PubMed  PubMed Central  Google Scholar 

  • Venkateswarlu M, Nath SB, Saratchandra B, Urs SR (2004) Evaluation of ISSR and RAPD markers for the detection of genetic diversity in mulberry (Morus spp.). Int J Indus Entomol 9:207–215

    Google Scholar 

  • Vijayan K, Tikader A, Weiguo Z, Venugolapan C, Ercisli S, Tsou CH (2011) Morus. In: Kole C (ed) Wild crop relatives: genomic and breeding resources, tropical and subtropical fruits. Springer-Verlag, Berlin, pp 75–95

    Chapter  Google Scholar 

  • Vijayan K, Ravikumar G, Tikader A (2018) Mulberry (Morus spp.) breeding for higher fruit production. In: Al-Khayri J, Jain S, Johnson D (eds) Advances in plant breeding strategies: fruits. Springer, Cham, pp 89–130

    Chapter  Google Scholar 

  • Xiang ZH, Zhang Z, Yu MD (1995) A preliminary report on the application of RAPD in systematics of Morus L. Acta Sericologica Sinica 21:208

    Google Scholar 

  • Zeng Q, Chen H, Zhang C, Han M, Li T, Qi X, Xiang Z, He N (2015) Definition of eight mulberry species in the genus Morus by internal transcribed spacer-based phylogeny. PLoS ONE 10(8):e0135411. https://doi.org/10.1371/journal.pone.0135411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao W, Pan YL (2000) RAPD analysis for the germplasm resources of genus mulberry. Acta Sericologica Sinica 4:1–8

    ADS  Google Scholar 

  • Zhao W, Pan VL (2004) Genetic diversity of genus Morus revealed by RAPD markers in China. Int J Agric Biol 6:950–954

    CAS  Google Scholar 

  • Zhao W, Miao X, Jia S, Pan Y, Huang Y (2005) Isolation and characterization of microsatellite loci from the mulberry. Morus l Plant Science 168(2):519–525. https://doi.org/10.1016/j.plantsci.2004.09.020

    Article  CAS  Google Scholar 

  • Zhao W, Zhou Z, Miao X, Wang S, Zhang L, Pan Y, Huang Y (2006) Genetic relatedness among cultivated and wild mulberry (Moraceae: Morus) as revealed by inter-simple sequence repeat (ISSR) analysis in China. Can J Plant Sci 86:251–257

    Article  CAS  Google Scholar 

  • Zhao W, Miao XX, Pan YL, Huang YP (2007) A comparison of genetic variation of mulberry as revealed by ISSR and SSR markers. Biodivers Conserv 16:275–290

    Article  Google Scholar 

  • Zhao W, Fang R, Pan Y, Yang Y, Chung J, Chung I, Park Y (2009) Analysis of genetic relationships of mulberry (Morus L.) germplasm using sequence-related amplified polymorphism (SRAP) markers. Afr J Biotech 8:2604–2610

    CAS  Google Scholar 

Download references

Acknowledgements

This research is funded by Agricultural Research Development Agency (Public Organization). N.P. was financially supported by the Graduate School Fellowship Program in agriculture and agro-industry from the Agricultural Research Development Agency (Public Organization) as of fiscal year 2022 and Science Achievement Scholarship of Thailand (SAST). Moreover, we thank The Queen Sirikit Department of Sericulture and Queen Sirikit Sericulture Center Sisaket for supported plant materials in this study.

Author information

Authors and Affiliations

Authors

Contributions

NP and CJ conceived and planned the experiments. NP carried out the experiments. NP, SN, NT, CK and PT contributed to sample preparation. NP and AN the computational framework and analyzed the data. NP and CJ contributed to the interpretation of the results. NP and CJ took the lead in writing the manuscript. All authors provided critical feedback and helped shape the research, analysis and manuscript.

Corresponding author

Correspondence to Chatchawan Jantasuriyarat.

Ethics declarations

Conflict of interest

There is no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 714 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Putthisawong, N., Nutthapornnitchakul, S., Thumthuan, N. et al. Genetic diversity of Thailand reserved mulberry germplasm based on morphological characteristics and newly developed EST-SSR and SRAP markers. Hortic. Environ. Biotechnol. (2024). https://doi.org/10.1007/s13580-024-00599-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13580-024-00599-2

Keywords

Navigation