Skip to main content
Log in

Effect of prior lenalidomide or daratumumab exposure on hematopoietic stem cell collection and reconstitution in multiple myeloma

  • Review
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

Background

The roles of Lenalidomide (Len) and Daratumumab (Dara) in multiple myeloma treatment are well-established, yet their influences on hematopoietic stem cell harvesting and reconstitution remain disputed.

Methods

We conducted a systematic database review to identify cohort studies or RCTs evaluating the effect of the use of Len or Dara on hematopoietic stem cell collection and peripheral blood count recovery in multiple myeloma patients. Effects on hematopoietic collection or reconstitution were estimated by comparing standardized mean differences (SMD) and mean differences (MD), or median differences.

Results

Eighteen relevant studies were identified, summarizing mobilization results. For Len, data from 13 studies were summarized, including total CD34+ cell yield, collection failure rate, and time to neutrophil and platelet engraftment. Results indicated that Len exposure led to decreased stem cell collection [SMD=-0.23, 95% CI (-0.34, -0.12)]. However, collection failure (<2×106) could be mitigated by plerixafor [OR=2.14, 95% CI (0.96, 4.77)]. For Dara, two RCTs and three cohort studies were included, showing that Dara exposure resulted in a reduction in total stem cells even with optimized plerixafor mobilization [SMD=-0.75, 95% CI (-1.26, -0.23)], and delayed platelet engraftment recovery [MD=1.20, 95% CI (0.73, 1.66)].

Conclusions

Our meta-analysis offers a comprehensive view of Len and Dara's impacts on hematopoietic stem cell collection and reconstitution in multiple myeloma. Len usage could lead to reduced stem cell collection, counteracted by plerixafor mobilization. Dara usage could result in diminished stem cell collection and delayed platelet engraftment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

Abbreviations

NDMM :

newly diagnosed multiple myeloma

ASCT :

autologous stem cell transplantation

PIs :

proteasome inhibitors

IMiDs :

immunomodulatory agents

Len/R :

lenalidomide

Dara :

daratumumab

SMD :

standardized mean difference

MD :

mean differences

qe :

quantile estimation

CI :

confidence interval

OS :

overall survival

CY :

cyclophosphamide

G-CSF :

granulocyte-colony stimulating factor

ANC :

absolute neutrophil count

PLT :

platelets

Btz :

bortezomib

thal/T :

thalidomide

Dex/D :

dexamethasone

VAD :

vincristine-Adriamycin-dexamethasone

VDCR :

bortezomib (V), dexamethasone (D), lenalidomide (R) and cyclophosphamide (C)

CVAMP :

cyclophosphamide, vincristine, doxorubicin, methylprednisolone

PAD :

bortezomib, doxorubicin and dexamethasone

References

  1. Kumar SK, Jacobus SJ, Cohen AD et al (2020) Carfilzomib or bortezomib in combination with lenalidomide and dexamethasone for patients with newly diagnosed multiple myeloma without intention for immediate autologous stem-cell transplantation (ENDURANCE): a multicentre, open-label, phase 3, randomised, controlled trial. Lancet Oncol 21:1317–1330. https://doi.org/10.1016/S1470-2045(20)30452-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Morè S, Corvatta L, Manieri VM et al (2022) Autologous Stem Cell Transplantation in Multiple Myeloma: Where Are We and Where Do We Want to Go? Cells 11:606. https://doi.org/10.3390/cells11040606

    Article  PubMed  PubMed Central  Google Scholar 

  3. Attal M, Lauwers-Cances V, Hulin C et al (2017) Lenalidomide, Bortezomib, and Dexamethasone with Transplantation for Myeloma. New England Journal of Medicine 376:1311–1320. https://doi.org/10.1056/NEJMoa1611750

    Article  CAS  PubMed  Google Scholar 

  4. Al Hamed R, Bazarbachi AH, Malard F et al (2019) Current status of autologous stem cell transplantation for multiple myeloma. Blood Cancer J 9:44. https://doi.org/10.1038/s41408-019-0205-9

    Article  PubMed  PubMed Central  Google Scholar 

  5. Mina R, Lonial S (2019) Is there still a role for stem cell transplantation in multiple myeloma? Cancer 125:2534–2543. https://doi.org/10.1002/cncr.32060

    Article  PubMed  Google Scholar 

  6. Bazarbachi AH, Al Hamed R, Malard F et al (2022) Induction therapy prior to autologous stem cell transplantation (ASCT) in newly diagnosed multiple myeloma: an update. Blood Cancer J 12:47. https://doi.org/10.1038/s41408-022-00645-1

    Article  PubMed  PubMed Central  Google Scholar 

  7. Cavo M, Gay F, Beksac M et al (2020) Autologous haematopoietic stem-cell transplantation versus bortezomib-melphalan-prednisone, with or without bortezomib-lenalidomide-dexamethasone consolidation therapy, and lenalidomide maintenance for newly diagnosed multiple myeloma (EMN02/HO95): a multicentre, randomised, open-label, phase 3 study. Lancet Haematol 7:e456–e468. https://doi.org/10.1016/S2352-3026(20)30099-5

    Article  PubMed  Google Scholar 

  8. Li S, Fu J, Ma H et al (2013) Lenalidomide-induced upregulation of CXCR4 in CD34+ hematopoietic cells, a potential mechanism of decreased hematopoietic progenitor mobilization. Leukemia 27:1407–1411. https://doi.org/10.1038/leu.2012.323

    Article  CAS  PubMed  Google Scholar 

  9. Facon T, Kumar SK, Plesner T et al (2021) Daratumumab, lenalidomide, and dexamethasone versus lenalidomide and dexamethasone alone in newly diagnosed multiple myeloma (MAIA): overall survival results from a randomised, open-label, phase 3 trial. Lancet Oncol 22:1582–1596. https://doi.org/10.1016/S1470-2045(21)00466-6

    Article  CAS  PubMed  Google Scholar 

  10. Dimopoulos MA, Oriol A, Nahi H et al (2023) Overall Survival With Daratumumab, Lenalidomide, and Dexamethasone in Previously Treated Multiple Myeloma (POLLUX): A Randomized, Open-Label, Phase III Trial. J Clin Oncol 41:1590–1599. https://doi.org/10.1200/JCO.22.00940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dimopoulos MA, Moreau P, Terpos E et al (2021) Multiple Myeloma: EHA-ESMO Clinical Practice Guidelines for Diagnosis, Treatment and Follow-up. Hemasphere 5:e528. https://doi.org/10.1097/HS9.0000000000000528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mateos M-V, Hernández M-T, Giraldo P et al (2013) Lenalidomide plus dexamethasone for high-risk smoldering multiple myeloma. N Engl J Med 369:438–447. https://doi.org/10.1056/NEJMoa1300439

    Article  CAS  PubMed  Google Scholar 

  13. Kumar S, Dispenzieri A, Lacy MQ et al (2007) Impact of lenalidomide therapy on stem cell mobilization and engraftment post-peripheral blood stem cell transplantation in patients with newly diagnosed myeloma. Leukemia 21:2035–2042. https://doi.org/10.1038/sj.leu.2404801

    Article  CAS  PubMed  Google Scholar 

  14. Paripati H, Stewart AK, Cabou S et al (2008) Compromised stem cell mobilization following induction therapy with lenalidomide in myeloma. Leukemia 22:1282–1284. https://doi.org/10.1038/sj.leu.2405100

    Article  CAS  PubMed  Google Scholar 

  15. Bhutani D, Zonder J, Valent J et al (2013) Evaluating the effects of lenalidomide induction therapy on peripheral stem cells collection in patients undergoing autologous stem cell transplant for multiple myeloma. Support Care Cancer 21:2437–2442. https://doi.org/10.1007/s00520-013-1808-5

    Article  PubMed  Google Scholar 

  16. Ogunniyi A, Rodriguez M, Devlin S et al (2017) Upfront use of plerixafor and granulocyte-colony stimulating factor (GCSF) for stem cell mobilization in patients with multiple myeloma: efficacy and analysis of risk factors associated with poor stem cell collection efficiency. Leuk Lymphoma 58:1123–1129. https://doi.org/10.1080/10428194.2016.1239261

    Article  CAS  PubMed  Google Scholar 

  17. Laurent V, Fronteau C, Antier C et al (2021) Autologous stem-cell collection following VTD or VRD induction therapy in multiple myeloma: a single-center experience. Bone Marrow Transplant 56:395–399. https://doi.org/10.1038/s41409-020-01033-8

    Article  CAS  PubMed  Google Scholar 

  18. Kumar S, Flinn I, Richardson PG et al (2012) Randomized, multicenter, phase 2 study (EVOLUTION) of combinations of bortezomib, dexamethasone, cyclophosphamide, and lenalidomide in previously untreated multiple myeloma. Blood 119:4375–4382. https://doi.org/10.1182/blood-2011-11-395749

    Article  CAS  PubMed  Google Scholar 

  19. Popat U, Saliba R, Thandi R et al (2009) Impairment of filgrastim-induced stem cell mobilization after prior lenalidomide in patients with multiple myeloma. Biol Blood Marrow Transplant 15:718–723. https://doi.org/10.1016/j.bbmt.2009.02.011

    Article  PubMed  PubMed Central  Google Scholar 

  20. Pozotrigo M, Adel N, Landau H et al (2013) Factors impacting stem cell mobilization failure rate and efficiency in multiple myeloma in the era of novel therapies: experience at Memorial Sloan Kettering Cancer Center. Bone Marrow Transplant 48:1033–1039. https://doi.org/10.1038/bmt.2012.281

    Article  CAS  PubMed  Google Scholar 

  21. Costa LJ, Abbas J, Hogan KR et al (2012) Growth factor plus preemptive ('just-in-time’) plerixafor successfully mobilizes hematopoietic stem cells in multiple myeloma patients despite prior lenalidomide exposure. Bone Marrow Transplant 47:1403–1408. https://doi.org/10.1038/bmt.2012.60

    Article  CAS  PubMed  Google Scholar 

  22. Samaras P, Pfrommer S, Seifert B et al (2015) Efficacy of Vinorelbine Plus Granulocyte Colony–Stimulation Factor for CD34+ Hematopoietic Progenitor Cell Mobilization in Patients with Multiple Myeloma. Biol Blood Marrow Transplant 21:74–80. https://doi.org/10.1016/j.bbmt.2014.09.020

    Article  CAS  PubMed  Google Scholar 

  23. Dosani T, Covut F, Pinto R et al (2019) Impact of lenalidomide on collected hematopoietic myeloid and erythroid progenitors: peripheral stem cell collection may not be affected. Leuk Lymphoma 60:2199–2206. https://doi.org/10.1080/10428194.2019.1573367

    Article  CAS  PubMed  Google Scholar 

  24. Partanen A, Valtola J, Silvennoinen R et al (2017) Impact of lenalidomide-based induction therapy on the mobilization of CD34+ cells, blood graft cellular composition, and post-transplant recovery in myeloma patients: a prospective multicenter study. Transfusion 57:2366–2372. https://doi.org/10.1111/trf.14220

    Article  CAS  PubMed  Google Scholar 

  25. Xu L, Liu J, Huang B et al (2021) Comparison of efficacy, safety, patients’ quality of life, and doctors’ occupational stress between lenalidomide-based and bortezomib-based induction in patients with newly diagnosed multiple myeloma. Cancer Med 10:1656–1667. https://doi.org/10.1002/cam4.3762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cowan AJ, Stevenson PA, Green DJ et al (2021) Prolonged Lenalidomide Therapy Does Not Impact Autologous Peripheral Blood Stem Cell Mobilization and Collection in Multiple Myeloma Patients: A Single-Center Retrospective Analysis. Transplant Cell Ther 27:661.e1–661.e6. https://doi.org/10.1016/j.jtct.2021.04.010

    Article  CAS  PubMed  Google Scholar 

  27. Voorhees PM, Kaufman JL, Laubach J et al (2020) Daratumumab, lenalidomide, bortezomib, and dexamethasone for transplant-eligible newly diagnosed multiple myeloma: the GRIFFIN trial. Blood 136:936–945. https://doi.org/10.1182/blood.2020005288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Moreau P, Attal M, Hulin C et al (2019) Bortezomib, thalidomide, and dexamethasone with or without daratumumab before and after autologous stem-cell transplantation for newly diagnosed multiple myeloma (CASSIOPEIA): a randomised, open-label, phase 3 study. Lancet 394:29–38. https://doi.org/10.1016/S0140-6736(19)31240-1

    Article  CAS  PubMed  Google Scholar 

  29. Manjappa S, Fox R, Reese J et al (2020) Impact of Daratumumab on Stem Cell Collection, Graft Composition and Engraftment Among Multiple Myeloma Patients Undergoing Autologous Stem Cell Transplant. Blood 136:35–37. https://doi.org/10.1182/blood-2020-142115

    Article  Google Scholar 

  30. Ghose J, Viola D, Terrazas C et al (2018) Daratumumab induces CD38 internalization and impairs myeloma cell adhesion. Oncoimmunology 7:e1486948. https://doi.org/10.1080/2162402X.2018.1486948

    Article  PubMed  PubMed Central  Google Scholar 

  31. Quarona V, Ferri V, Chillemi A et al (2015) Unraveling the contribution of ectoenzymes to myeloma life and survival in the bone marrow niche. Ann N Y Acad Sci 1335:10–22. https://doi.org/10.1111/nyas.12485

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Al Saleh AS, Sidiqi MH, Gertz MA et al (2020) Delayed neutrophil engraftment in patients receiving Daratumumab as part of their first induction regimen for multiple myeloma. Am J Hematol 95:E8–E10. https://doi.org/10.1002/ajh.25654

    Article  PubMed  Google Scholar 

  33. Hulin C, Offner F, Moreau P et al (2021) Stem cell yield and transplantation in transplant-eligible newly diagnosed multiple myeloma patients receiving daratumumab + bortezomib/thalidomide/dexamethasone in the phase 3 CASSIOPEIA study. Haematologica 106:2257–2260. https://doi.org/10.3324/haematol.2020.261842

    Article  PubMed  PubMed Central  Google Scholar 

  34. Luan D, Christos PJ, Ancharski M et al (2020) Timing of Daratumumab Administered Pre-Mobilization in Multiple Myeloma Impacts Pre-Harvest Peripheral Blood CD34+ Cell Counts and Plerixafor Use. Blood 136:15–16. https://doi.org/10.1182/blood-2020-140811

    Article  Google Scholar 

  35. Page MJ, McKenzie JE, Bossuyt PM et al (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Rev Esp Cardiol (Engl Ed) 74:790–799. https://doi.org/10.1016/j.rec.2021.07.010

    Article  PubMed  Google Scholar 

  36. Voorhees PM, Rodriguez C, Reeves B et al (2021) Daratumumab plus RVd for newly diagnosed multiple myeloma: final analysis of the safety run-in cohort of GRIFFIN. Blood Adv 5:1092–1096. https://doi.org/10.1182/bloodadvances.2020003642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wan X, Wang W, Liu J, Tong T (2014) Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol 14:135. https://doi.org/10.1186/1471-2288-14-135

    Article  PubMed  PubMed Central  Google Scholar 

  38. Hozo SP, Djulbegovic B, Hozo I (2005) Estimating the mean and variance from the median, range, and the size of a sample. BMC Med Res Methodol 5:13. https://doi.org/10.1186/1471-2288-5-13

    Article  PubMed  PubMed Central  Google Scholar 

  39. McGrath S, Sohn H, Steele R, Benedetti A (2020) Meta-analysis of the difference of medians. Biom J 62:69–98. https://doi.org/10.1002/bimj.201900036

    Article  MathSciNet  PubMed  Google Scholar 

  40. Lo C, Mertz D, Loeb M (2014) Newcastle-Ottawa Scale: comparing reviewers’ to authors’ assessments. BMC Med Res Methodol 14:1–5. https://doi.org/10.1186/1471-2288-14-45

    Article  Google Scholar 

  41. Balduzzi S, Rücker G, Schwarzer G (2019) How to perform a meta-analysis with R: a practical tutorial. Evid Based Ment Health 22:153–160. https://doi.org/10.1136/ebmental-2019-300117

    Article  PubMed  PubMed Central  Google Scholar 

  42. Hopman RK, DiPersio JF (2014) Advances in stem cell mobilization. Blood Rev 28:31–40. https://doi.org/10.1016/j.blre.2014.01.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Giralt S, Costa L, Schriber J et al (2014) Optimizing autologous stem cell mobilization strategies to improve patient outcomes: consensus guidelines and recommendations. Biol Blood Marrow Transplant 20:295–308. https://doi.org/10.1016/j.bbmt.2013.10.013

    Article  PubMed  Google Scholar 

  44. Pulte D, Jansen L, Castro FA et al (2015) Trends in survival of multiple myeloma patients in Germany and the United States in the first decade of the 21st century. Br J Haematol 171:189–196. https://doi.org/10.1111/bjh.13537

    Article  PubMed  Google Scholar 

  45. Shah SR, Tran TM (2007) Lenalidomide in myelodysplastic syndrome and multiple myeloma. Drugs 67:1869–1881. https://doi.org/10.2165/00003495-200767130-00005

    Article  CAS  PubMed  Google Scholar 

  46. Hoy SM (2017) Pomalidomide: A Review in Relapsed and Refractory Multiple Myeloma. Drugs 77:1897–1908. https://doi.org/10.1007/s40265-017-0833-y

    Article  CAS  PubMed  Google Scholar 

  47. van der Veer MS, de Weers M, van Kessel B et al (2011) Towards effective immunotherapy of myeloma: enhanced elimination of myeloma cells by combination of lenalidomide with the human CD38 monoclonal antibody daratumumab. Haematologica 96:284–290. https://doi.org/10.3324/haematol.2010.030759

    Article  CAS  PubMed  Google Scholar 

  48. Costa LJ, Chhabra S, Medvedova E et al (2022) Daratumumab, Carfilzomib, Lenalidomide, and Dexamethasone With Minimal Residual Disease Response-Adapted Therapy in Newly Diagnosed Multiple Myeloma. J Clin Oncol 40:2901–2912. https://doi.org/10.1200/JCO.21.01935

    Article  CAS  PubMed  Google Scholar 

  49. Leypoldt LB, Tichy D, Besemer B et al (2024) Isatuximab, Carfilzomib, Lenalidomide, and Dexamethasone for the Treatment of High-Risk Newly Diagnosed Multiple Myeloma. J Clin Oncol 42:26–37. https://doi.org/10.1200/JCO.23.01696

    Article  CAS  PubMed  Google Scholar 

  50. Daratumumab, Bortezomib, Lenalidomide, and Dexamethasone for Multiple Myeloma | NEJM. https://www.nejm.org/doi/full/10.1056/NEJMoa2312054. Accessed 1 Feb 2024

  51. Kumar S, Giralt S, Stadtmauer EA et al (2009) Mobilization in myeloma revisited: IMWG consensus perspectives on stem cell collection following initial therapy with thalidomide-, lenalidomide-, or bortezomib-containing regimens. Blood 114:1729–1735. https://doi.org/10.1182/blood-2009-04-205013

    Article  CAS  PubMed  Google Scholar 

  52. Sebastien B, Cheverton P, Magnin C et al (2022) Development and validation of a predictive model to guide the use of plerixafor in pediatric population. Bone Marrow Transplant 57:1827–1832. https://doi.org/10.1038/s41409-022-01831-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yu B, Jiang T, Liu D (2020) BCMA-targeted immunotherapy for multiple myeloma. J Hematol Oncol 13:125. https://doi.org/10.1186/s13045-020-00962-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lancman G, Sastow DL, Cho HJ et al (2021) Bispecific Antibodies in Multiple Myeloma: Present and Future. Blood Cancer Discov 2:423–433. https://doi.org/10.1158/2643-3230.BCD-21-0028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mark T, Stern J, Furst JR et al (2008) Stem cell mobilization with cyclophosphamide overcomes the suppressive effect of lenalidomide therapy on stem cell collection in multiple myeloma. Biol Blood Marrow Transplant 14:795–798. https://doi.org/10.1016/j.bbmt.2008.04.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Not applicable.

Funding

This work was financially supported by the National Natural Science Foundation of China (82000218 granted for Zhijuan Lin, U22A20290 and 82170180 granted for Bing Xu) and the Natural Science Foundation of Fujian Province (2020J01222713 granted for Zhijuan Lin, 2020J011246 granted for Bing Xu, 2020GGB054 granted for Zhifeng Li). Xiamen Municipal Bureau of Science and Technology (3502Z20209003 granted for Bing Xu, 3502Z20209008 granted for Zhifeng Li); The funding body played no role in the design of the study and collection, analysis, and interpretation of data and in writing the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

HPD, ZJL and BX conceived and designed the study. HPD, ZJL and BX selected the articles and extracted and cross-checked the data. HPD, LL, ZFL, MMD, QL and YLJ contributed to the statistical analysis. HPD and ZJL wrote the first draft of the manuscript. HPD, QHJ, and XB revised and discussed the final edition. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Bing Xu or Zhijuan Lin.

Ethics declarations

Ethics approval and consent to participate

This is not applicable for this summary.

Consent for publication

Not applicable

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

Supplementary figure 1 Hematopoietic stem cell collection failure due to lenalidomide (<2×106) (PNG 19 kb)

ESM 2

Supplementary figure 2 Suboptimal outcome of hematopoietic stem cell collection due to Dara (<4×106) (PNG 8 kb)

ESM 3

Supplementary figure 3 Quality assessment of the included studies (RCT) (PNG 5 kb)

ESM 4

Supplementary Table 1. Quality assessment of the included studies. Supplementary Table 2. Summary of the results of lenalidomide studies on the effects of hematopoietic reconstitution (ANC). Supplementary Table 3. Summary of the results of lenalidomide studies on the effects of hematopoietic reconstitution (PLT). Supplementary Table 4. Summary of the results of daratumumab studies on the effects of hematopoietic reconstitution (ANC). Supplementary Table 5. Summary of the results of daratumumab studies on the effects of hematopoietic reconstitution (PLT). Supplementary Table 6. Strategies for the use of Plerixafor (DOCX 24 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, H., Jiang, Q., Liu, L. et al. Effect of prior lenalidomide or daratumumab exposure on hematopoietic stem cell collection and reconstitution in multiple myeloma. Ann Hematol (2024). https://doi.org/10.1007/s00277-024-05683-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00277-024-05683-2

Keywords

Navigation