Skip to main content
Log in

Bursting oscillations in dry friction system under external excitation

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In this paper, a system containing switching manifolds is constructed based on a non-linear conveyor belt model by introducing a periodic external excitation term. When the frequency of the external excitation is much smaller than the intrinsic frequency of the system, a series of bursting phenomena can be observed. Using the Filippov convex method, bifurcation mechanisms on the non-smooth boundary are discussed. Particularly, the explicit expression of the sliding region is obtained. Based on that, different bursting dynamics, especially the switching patterns dominated by sliding phenomena, are revealed by considering two cases of stiffness and excitation amplitude. It is shown that there exist different types of equilibrium points, leading to multiple modes of bifurcation, as stiffness changes. However, there always exist a pair of subcritical Hopf bifurcation points, which lie on the unstable equilibrium curve. Varying the excitation amplitude, different types of bursting oscillation modes may occur. In addition, both the transition of the type of equilibrium and the intrinsic structure of the system have effects on the local structure of the trajectory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Z D Zhang and Q S Bi, Chin. Phys. Lett. 26(1), 010503 (2009)

    Article  ADS  Google Scholar 

  2. S Sinha et al, Pramana – J. Phys. 84(2), 167 (2015)

  3. M Guerard et al, Rev. Mutation Res. 763, 181 (2015)

    Article  CAS  Google Scholar 

  4. L Jin, Q S Lu and E H Twizell, J. Sound Vib. 298(4–5), 1019 (2006)

    Article  ADS  Google Scholar 

  5. Y A Kuznetsov, S Rinaldi and A Gragnani, Int. J. Bifurc. Chaos 13(08), 2157 (2003)

    Article  Google Scholar 

  6. P T Piiroinen and Y A Kuznetsov, ACM Trans. Math. Softw. 34(3), 1 (2008)

    Article  Google Scholar 

  7. M Bernardo et al, Piecewise-smooth dynamical systems: theory and applications (Springer Science and Business Media, 2008)

  8. M Bernardo et al, Chaos Solitons Fractals 11(10), 1881 (1999)

    Google Scholar 

  9. Z T Zhusubaliyev and E Mosekilde, Bifurcations and chaos in piecewise-smooth dynamical systems (World Scientific. 2003)

  10. G Csernák and G Licskó, Meccanica 56(9), 2401 (2021)

    Article  MathSciNet  Google Scholar 

  11. M Bernardo, P Kowalczyk and A Nordmark, Int. J. Bifurc. Chaos 13(10), 2935 (2003)

    Article  Google Scholar 

  12. U Andreaus and P Casini, J. Sound Vib. 245(4), 685 (2001)

    Article  ADS  Google Scholar 

  13. G Altamirano, M H Tien and K D’Souza, J. Comput. Nonlinear Dyn. 16(6), 061002 (2021)

    Article  Google Scholar 

  14. R Qu, S L Li and Q S Bi, Adv. Mech. Eng. 11(5), 1687814019851976 (2019)

    Article  Google Scholar 

  15. M Oestreich, N Hinrichs and K Popp, Arch. Appl. Mech. 66(5), 301 (1996)

    Article  ADS  Google Scholar 

  16. J P Den Hartog, Trans. ASME. 53, 107 (1931)

  17. L C Bo and D Pavelescu, Wear 82(3), 277 (1982)

    Article  Google Scholar 

  18. M Yar and J K Hammond, J. Eng. Mech. 113(7), 1000 (1987)

    Article  Google Scholar 

  19. J P Peng and M Carpino, Tribology Trans. 37(1), 91 (1994)

    Article  Google Scholar 

  20. A Bisoffi et al, IEEE Trans. Automatic Control 63(8), 2654 (2018)

    Article  MathSciNet  Google Scholar 

  21. V Carmona, S Fernández-García and A E Teruel, Physica D 443, 133566 (2023)

    Article  Google Scholar 

  22. H Dai et al, Counter-example guided synthesis of neural network Lyapunov functions for piecewise linear systems, 59th IEEE Conference on Decision and Control (2020) pp. 1274–1281

  23. H Liu, Z Wei and I Moroz, J. Math. Anal. Appl. 526(2), 127318 (2023)

  24. H Chen et al, Bull. Sci. Mathématiques 160, 102858 (2020)

  25. C Touzé, A Vizzaccaro and O Thomas, Nonlinear Dyn. 105(2), 1141 (2021)

  26. J Lee and R Sakthivel, Pramana – J. Phys. 80, 757 (2013)

    Google Scholar 

  27. M Kaplan and A Bekir, Pramana – J. Phys. 87, 1 (2016)

    Google Scholar 

  28. G Wen, H Xu and J Xie, Nonlinear Dyn. 64, 49 (2011)

    Article  Google Scholar 

  29. C Kuehn, Multiple time scale dynamics (Springer, New York, 2015) pp. 1–473

    Book  Google Scholar 

  30. M Bernardo, P Kowalczyk and A Nordmark, Physica D 170, 175 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  31. A Colombo et al, Physica D 241(22), 1845 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  32. A Dhooge et al, Math. Comput. Model. Dyn. Syst. 14(2), 147 (2008)

    Article  MathSciNet  Google Scholar 

  33. A Jaatinen and T Ala-Nissila, J. Phys.: Cond. Matter 22(20), 205402 (2010)

    ADS  CAS  Google Scholar 

  34. D Premraj et al, Commun. Nonlinear Sci. Numer. Simulat. 37, 212 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  35. R Qu and S L Li, Shock Vibration 2019, 8213808 (2019)

    Article  Google Scholar 

  36. S M Baer, T Erneux and J Rinzel, SIAM J. Appl. Dyn. Syst. 49(1), 55 (1989)

  37. R Bertram et al, Bull. Math. Biol. 57(3), 413 (1995)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research is supported by the National Natural Science Foundation of China (12372012), Young Science and Technology Talents Lifting Project of Jiangsu Association for Science and Technology and Scientific Research Project of Jiangsu University (Grant No. 22A634).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengdi Zhang.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Zhang, Z. Bursting oscillations in dry friction system under external excitation. Pramana - J Phys 98, 36 (2024). https://doi.org/10.1007/s12043-024-02734-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-024-02734-1

Keywords

PACS Nos

Navigation