Skip to main content
Log in

Generation of porcine circovirus type 4 virus-like particles and their use to detect serum antibodies

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Porcine circovirus type 4 (PCV4), first identified in 2019 as a newly emerging pathogen, has been found in several provinces of China, as well as in Korea and Thailand. Since PCV4 is not included in immunization programs, epidemiological investigations should be conducted for detection of anti-PCV4 antibodies. Virus-like particles (VLPs) are frequently used for serological analysis of pathogen infections. However, there have been no reports on using PCV4 VLPs for serological investigation of PCV4 infection. In this study, we generated self-assembled PCV4 VLPs using an E. coli expression system, purified them using a two-step process, and used them to develop an indirect ELISA. This ELISA method was found to be highly specific, sensitive, and repeatable, making it suitable for PCV4 antibody detection in serum samples. Finally, the ELISA was used to analyze 422 serum samples collected from across several regions in China, 134 of which tested positive. Thus, the PCV4-VLP-based ELISA can effectively detect antibodies against PCV4 in serum samples, making it a useful tool for PCV4 epidemiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated and analyzed in the current study are available from the corresponding author upon reasonable request.

References

  1. Allan GM, McNeilly F, Cassidy JP et al (1995) Pathogenesis of porcine circovirus; experimental infections of colostrum deprived piglets and examination of pig foetal material. Vet Microbiol 44:49–64. https://doi.org/10.1016/0378-1135(94)00136-K

    Article  CAS  PubMed  Google Scholar 

  2. Meng X-J (2012) Spread like a wildfire—the omnipresence of porcine circovirus type 2 (PCV2) and its ever-expanding association with diseases in pigs. Virus Res 164:1–3. https://doi.org/10.1016/j.virusres.2011.12.005

    Article  CAS  PubMed  Google Scholar 

  3. Allan G, Krakowka S, Ellis J, Charreyre C (2012) Discovery and evolving history of two genetically related but phenotypically different viruses, porcine circoviruses 1 and 2. Virus Res 164:4–9. https://doi.org/10.1016/j.virusres.2011.09.013

    Article  CAS  PubMed  Google Scholar 

  4. Opriessnig T, Karuppannan AK, Castro AMMG, Xiao C-T (2020) Porcine circoviruses: current status, knowledge gaps and challenges. Virus Res 286:198044. https://doi.org/10.1016/j.virusres.2020.198044

    Article  CAS  PubMed  Google Scholar 

  5. Klaumann F, Correa-Fiz F, Franzo G et al (2018) Current knowledge on porcine circovirus 3 (PCV-3): a novel virus with a yet unknown impact on the swine industry. Front Vet Sci 5:315. https://doi.org/10.3389/fvets.2018.00315

    Article  PubMed  PubMed Central  Google Scholar 

  6. Zhang H-H, Hu W-Q, Li J-Y et al (2020) Novel circovirus species identified in farmed pigs designated as Porcine circovirus 4, Hunan province, China. Transbound Emerg Dis 67:1057–1061. https://doi.org/10.1111/tbed.13446

    Article  CAS  PubMed  Google Scholar 

  7. Nguyen V-G, Do H-Q, Huynh T-M-L et al (2022) Molecular-based detection, genetic characterization and phylogenetic analysis of porcine circovirus 4 from Korean domestic swine farms. Transbound Emerg Dis 69:538–548. https://doi.org/10.1111/tbed.14017

    Article  CAS  PubMed  Google Scholar 

  8. Sirisereewan C, Nguyen TC, Piewbang C et al (2023) Molecular detection and genetic characterization of porcine circovirus 4 (PCV4) in Thailand during 2019–2020. Sci Rep 13:1–10. https://doi.org/10.1038/s41598-023-32382-1

    Article  CAS  Google Scholar 

  9. Niu G, Zhang X, Ji W et al (2022) Porcine circovirus 4 rescued from an infectious clone is replicable and pathogenic in vivo. Transbound Emerg Dis 69:e1632–e1641. https://doi.org/10.1111/tbed.14498

    Article  CAS  PubMed  Google Scholar 

  10. Wang D, Mai J, Yang Y et al (2022) Current knowledge on epidemiology and evolution of novel porcine circovirus 4. Vet Res 53:38. https://doi.org/10.1186/s13567-022-01053-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhang D, Bai C, Ge K et al (2020) Establishment of an SYBR Green-based real-time PCR assay for porcine circovirus type 4 detection. J Virol Methods 285:113963. https://doi.org/10.1016/j.jviromet.2020.113963

    Article  CAS  PubMed  Google Scholar 

  12. Chen N, Xiao Y, Li X et al (2021) Development and application of a quadruplex real-time PCR assay for differential detection of porcine circoviruses (PCV1 to PCV4) in Jiangsu province of China from 2016 to 2020. Transbound Emerg Dis 68:1615–1624. https://doi.org/10.1111/tbed.13833

    Article  CAS  PubMed  Google Scholar 

  13. Sun W, Du Q, Han Z et al (2021) Detection and genetic characterization of porcine circovirus 4 (PCV4) in Guangxi, China. Gene 773:145384. https://doi.org/10.1016/j.gene.2020.145384

    Article  CAS  PubMed  Google Scholar 

  14. Ge M, Hu W-Q, Ning K-M et al (2021) The seroprevalence of the newly identified porcine circovirus type 4 in China investigated by an enzymed-linked immunosorbent assay. Transbound Emerg Dis 68:2910–2914. https://doi.org/10.1111/tbed.14184

    Article  CAS  PubMed  Google Scholar 

  15. Hu X, Ding Z, Li Y et al (2022) Serum investigation of antibodies against porcine circovirus 4 Rep and Cap protein in Jiangxi Province, China. Front Microbiol 13:944679. https://doi.org/10.3389/fmicb.2022.944679

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lian Z, Liu J, Liu P et al (2021) Development and application of an indirect ELISA for the detection of antibody to porcine circovirus 4 in pigs. Transbound Emerg Dis 68:2975–2979. https://doi.org/10.1111/tbed.14267

    Article  CAS  PubMed  Google Scholar 

  17. Zhang Y, Wang Z, Zhan Y et al (2016) Generation of E. coli-derived virus-like particles of porcine circovirus type 2 and their use in an indirect IgG enzyme-linked immunosorbent assay. Arch Virol 161:1485–1491. https://doi.org/10.1007/s00705-016-2816-9

    Article  CAS  PubMed  Google Scholar 

  18. Trible BR, Suddith AW, Kerrigan MA et al (2012) Recognition of the different structural forms of the capsid protein determines the outcome following infection with porcine circovirus type 2. J Virol 86:13508–13514. https://doi.org/10.1128/jvi.01763-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Meng X-J (2013) Porcine circovirus type 2 (PCV2): pathogenesis and interaction with the immune system. Annu Rev Anim Biosci 1:43–64. https://doi.org/10.1146/annurev-animal-031412-103720

    Article  CAS  PubMed  Google Scholar 

  20. Hirschberg S, Bauer H, Kamhieh-Milz J et al (2022) SARS-CoV-2 virus-like particles (VLPs) specifically detect humoral immune reactions in an ELISA-based platform. Antibodies (Basel) 11:76. https://doi.org/10.3390/antib11040076

    Article  CAS  PubMed  Google Scholar 

  21. Kirnbauer R, Hubbert NL, Wheeler CM et al (1994) A virus-like particle enzyme-linked immunosorbent assay detects serum antibodies in a majority of women infected with human papillomavirus type 16. JNCI J Natl Cancer Inst 86:494–499. https://doi.org/10.1093/jnci/86.7.494

    Article  CAS  PubMed  Google Scholar 

  22. Du P, Brendle S, Milici J et al (2015) Comparisons of VLP-based ELISA, neutralization assays with native HPV, and neutralization assays with PsV in detecting HPV antibody responses in HIV-infected women. J AIDS Clin Res 6:433. https://doi.org/10.4172/2155-6113.1000433

    Article  PubMed  PubMed Central  Google Scholar 

  23. Mali DN, Bondre VP (2022) Japanese encephalitis genotype I virus-like particles stably expressed in BHK-21 cells serves as potential antigen in JE IgM ELISA. Appl Microbiol Biotechnol 106:1945. https://doi.org/10.1007/s00253-022-11825-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Purdy DE, Noga AJ, Chang G-JJ (2004) Noninfectious recombinant antigen for detection of St. Louis encephalitis virus-specific antibodies in serum by enzyme-linked immunosorbent assay. J Clin Microbiol 42:4709–4717. https://doi.org/10.1128/JCM.42.10.4709-4717.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bai M, Wang R, Sun S et al (2021) Development and validation of a competitive ELISA based on virus-like particles of serotype Senecavirus A to detect serum antibodies. AMB Expr 11:7. https://doi.org/10.1186/s13568-020-01167-4

    Article  CAS  Google Scholar 

  26. Nainys J, Lasickiene R, Petraityte-Burneikiene R et al (2014) Generation in yeast of recombinant virus-like particles of porcine circovirus type 2 capsid protein and their use for a serologic assay and development of monoclonal antibodies. BMC Biotechnol 14:100. https://doi.org/10.1186/s12896-014-0100-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang Y, Wang G, Duan W-T et al (2020) Self-assembly into virus-like particles of the recombinant capsid protein of porcine circovirus type 3 and its application on antibodies detection. AMB Expr 10:3. https://doi.org/10.1186/s13568-019-0940-0

    Article  CAS  Google Scholar 

  28. Xu T, Hou C-Y, Zhang Y-H et al (2022) Simultaneous detection and genetic characterization of porcine circovirus 2 and 4 in Henan province of China. Gene 808:145991. https://doi.org/10.1016/j.gene.2021.145991

    Article  CAS  PubMed  Google Scholar 

  29. Hou C-Y, Zhang L-H, Zhang Y-H et al (2022) Phylogenetic analysis of porcine circovirus 4 in Henan Province of China: a retrospective study from 2011 to 2021. Transbound Emerg Dis 69:1890–1901. https://doi.org/10.1111/tbed.14172

    Article  CAS  PubMed  Google Scholar 

  30. Blanchard P, Mahé D, Cariolet R et al (2003) Protection of swine against post-weaning multisystemic wasting syndrome (PMWS) by porcine circovirus type 2 (PCV2) proteins. Vaccine 21:4565–4575. https://doi.org/10.1016/S0264-410X(03)00503-6

    Article  CAS  PubMed  Google Scholar 

  31. Wang D, Mai J, Lei B et al (2021) Structure, antigenic properties, and highly efficient assembly of PCV4 capsid protein. Front Vet Sci 8:695466. https://doi.org/10.3389/fvets.2021.695466

    Article  PubMed  PubMed Central  Google Scholar 

  32. Huang L, Sun Z, Xia D et al (2020) Neutralization mechanism of a monoclonal antibody targeting a porcine circovirus type 2 cap protein conformational epitope. J Virol 94:e0183619. https://doi.org/10.1128/jvi.01836-19

    Article  CAS  Google Scholar 

  33. Li X, Chen S, Niu G et al (2022) Porcine circovirus type 4 strains circulating in China are relatively stable and have higher homology with mink circovirus than other porcine circovirus types. Int J Mol Sci 23:3288. https://doi.org/10.3390/ijms23063288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wu H, Hou C, Wang Z et al (2022) First complete genomic sequence analysis of porcine circovirus type 4 (PCV4) in wild boars. Vet Microbiol 273:109547. https://doi.org/10.1016/j.vetmic.2022.109547

    Article  CAS  PubMed  Google Scholar 

  35. Xu T, Chen X-M, Fu Y et al (2022) Cross-species transmission of an emerging porcine circovirus (PCV4): First molecular detection and retrospective investigation in dairy cows. Vet Microbiol 273:109528. https://doi.org/10.1016/j.vetmic.2022.109528

    Article  CAS  PubMed  Google Scholar 

  36. Zhang L-H, Wang T-X, Fu P-F et al (2023) First molecular detection and genetic analysis of a novel porcine circovirus (porcine circovirus 4) in dogs in the world. Microbiol Spectrum 11:e0433322. https://doi.org/10.1128/spectrum.04333-22

    Article  CAS  Google Scholar 

  37. Wang Y, Yan S, Ji Y et al (2022) First identification and phylogenetic analysis of porcine circovirus type 4 in fur animals in Hebei, China. Animals 12:3325. https://doi.org/10.3390/ani12233325

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by a grant from the Heilongjiang Provincial Key Research and Development Program (JD22A023).

Author information

Authors and Affiliations

Authors

Contributions

Y.T. and H.W. conceptualized the work and designed the studies; Z.F., M.S., and S.W. performed the experiments; Y.T. and S.W. analyzed the data; Z.F. and H.W. wrote the manuscript; and X.C. and T.A. revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Haiwei Wang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Handling Editor: Roman Pogranichniy.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Zheng Fang and Yabin Tu both authors are co-first authors.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 156 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, Z., Tu, Y., Sun, M. et al. Generation of porcine circovirus type 4 virus-like particles and their use to detect serum antibodies. Arch Virol 169, 67 (2024). https://doi.org/10.1007/s00705-024-05997-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00705-024-05997-6

Navigation