Skip to main content

Advertisement

Log in

Pressure-induced effects on the mechanical and thermophysical properties of LiAl2X (X = Rh, Pd, Ir and Pt) ternary intermetallic compounds

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Using the projected augmented wave pseudo-potentials (PAW) approach and the generalized gradient approximation (GGA) of Perdew–Burke–Ernzerhof (PBEsol) in the framework of the density functional theory as implemented in the Quantum Espresso code, the mechanical behaviour as well as the thermo-physical properties of LiAl2X (X = Rh, Pd, Ir and Pt) ternary intermetallic compounds under high hydrostatic pressure up to 10 GPa have been predicted. Our finding on the elastic stiffness constants, aggregate elastic modulus, Debye temperature, limiting angular vibrational frequency, vibrational energy as well as the vibrational free energy of LiAl2X (X = Rh, Pd, Ir and Pt) compounds shows that all these quantities increase monotonically with increasing pressure up to 10 GPa; while the elastic compliance constants (except S12), the vibrational entropy and the constant volume heat capacity of LiAl2X (X = Rh, Pd, Ir and Pt) decrease monotonically with increasing pressure. At room-temperature and zero-pressure, the obtained values of the Debye temperature θD are 486.10 K for LiAl2Rh, 462.51 K for LiAl2Pd, 401.36 K for LiAl2Ir and 406.62 K for LiAl2Pt, respectively; while at room-temperature and pressure of 10 GPa, the values obtained of θD are around: 528.29 K for LiAl2Rh, 507.80 K for LiAl2Pd, 428.81 K for LiAl2Ir and 442.88 K for LiAl2Pt, respectively. In addition, the analysing of the generalized mechanical stability criteria under isotropic pressure shows that all our materials of interest are mechanically stable up to 10 GPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Schlapbach L and Züttel A 2001 Nature 414 353

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Zhang X, Huang W, Chen J, Liu C, Yu H, Zhao L et al 2018 Vacuum 157 312

    Article  ADS  CAS  Google Scholar 

  3. Daoud S and Bouarissa N 2018 Comput. Condens. Matter. 16 e00359

    Google Scholar 

  4. Saib S and Bouarissa N 2006 J. Phys. Chem. Solids 67 1888

    Article  ADS  CAS  Google Scholar 

  5. Özer T 2020 Can. J. Phys. 98 357

    Article  ADS  Google Scholar 

  6. Li Z, Shouxin L and Wei K 2006 Acta Metall. Sin. 42 781

    Google Scholar 

  7. Saib S, Bouarissa N, Rodríguez-Hernández P and Munôz A 2008 Physica B 403 4059

    Article  ADS  CAS  Google Scholar 

  8. Daoud S, Bouarissa N, Bioud N and Saini P K 2019 Chem. Phys. 525 110399

    Article  CAS  Google Scholar 

  9. Wen Y and Yunxin W 2020 Phys. Status Solidi B 257 2000434

    Article  ADS  CAS  Google Scholar 

  10. Daoud S and Bouarissa N 2019 Theor. Chem. Acc. 138 49

    Article  Google Scholar 

  11. Varshney D, Joshi G, Kaurav N and Singh R K 2009 J. Phys. Chem. Solids 70 451

    Article  ADS  CAS  Google Scholar 

  12. Drews-Nicolai L and Hohlneicher G 2001 J. Alloys Compd. 316 1

    Article  CAS  Google Scholar 

  13. Czybulka A, Petersen A and Schuster H-U 1990 J. Less-Common Met. 161 303

    Article  CAS  Google Scholar 

  14. Kube C M 2017 J. Acoust. Soc. Am. 141 1804

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Kube C M, Supplementary Table to Article: Iterative solution to bulk wave propagation in polycrystalline materials See supplementary material at: https://doi.org/10.1121/1.4978008

  16. Benamrani A, Daoud S and Bouarissa N 2022 Eur. Phys. J. B 95 106

    Article  ADS  CAS  Google Scholar 

  17. Baroni S, Dal Corso A, Gironcoli S and Giannozzi P 2001 Rev. Med. Phys. 73 515

    Article  ADS  CAS  Google Scholar 

  18. Blöchl P E 1994 Phys. Rev. B 50 17953

    Article  ADS  Google Scholar 

  19. Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Constantin L A et al 2008 Phys. Rev. Lett. 100 136406

    Article  ADS  PubMed  Google Scholar 

  20. Corso A D 2016 J. Phys. Condens. Matter 28 075401

    Article  ADS  Google Scholar 

  21. Khatta S, Kaur V, Tripathi S K and Prakash S 2018 AIP Conf. Proc. 1953 130016

    Article  Google Scholar 

  22. Malica C and Dal Corso A 2020 J. Phys. Condens. Matter 32 315902

    Article  CAS  PubMed  Google Scholar 

  23. Bhardwaj P, Sarwan M, Dubey R and Singh S 2013 J. Mol. Struct. 1043 85

    Article  ADS  CAS  Google Scholar 

  24. Zeng X, Peng R, Yu Y, Hu Z, Wen Y and Song L 2018 Materials 11 2015

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  25. Jha P K and Sanyal S P 1999 J. Phys. Chem. Solids 60 567

    Article  ADS  CAS  Google Scholar 

  26. Daoud S 2014 Int. J. Adv. Res. Phys. Sci. 1 1

    Google Scholar 

  27. Kube C M 2016 AIP Adv. 6 095209

    Article  ADS  Google Scholar 

  28. Daoud S, Bouarissa N, Benmakhlouf A and Allaoui O 2020 Phys. Status Solidi B 257 1900537

    Article  ADS  CAS  Google Scholar 

  29. Lebga N, Daoud S, Sun X W, Bioud N and Latreche A 2018 J. Electron. Mater. 47 3430

    Article  ADS  CAS  Google Scholar 

  30. Daoud S, Bioud N and Lebga N 2019 Chin. J. Phys. 57 165

    Article  CAS  Google Scholar 

  31. Mankad V H and Jha P K 2016 J. Therm. Anal. Calorim. 124 11

    Article  CAS  Google Scholar 

  32. Greaves G N, Greer A, Lakes R and Rouxel T 2011 Nat. Mater. 10 823

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Yuan X L, Wei D Q, Cheng Y, Ji G F, Zhang Q and Gong Z Z 2012 Comput. Mater. Sci. 58 125

    Article  CAS  Google Scholar 

  34. Bower A F 2010 Applied Mechanics of Solids (Boca Raton, FL: CRC Press, Taylor & Francis Group)

    Google Scholar 

  35. Bao L, Kong Z, Qu D and Duan Y 2020 J. Phys. Chem. Solids 142 109465

    Article  CAS  Google Scholar 

  36. Daoud S 2015 Int. J. Sci. World 3 43

    Article  Google Scholar 

  37. Bioud N, Kassali K and Bouarissa N 2017 J. Electron. Mater. 46 2521

    Article  ADS  CAS  Google Scholar 

  38. Dengg T 2020 PhD Thesis Materials Center Leob en Forschung GmbH (MCL), and Institute of Physics, Karl-Franzens-University Graz

  39. Rekab-Djabri H, Abdus Salam M, Daoud S, Drief M, Guermit Y and Louhibi-Fasla S 2020 J. Magnes. Alloy. 8 1166

    Article  CAS  Google Scholar 

  40. Benamrani A, Daoud S, Abdus Salam M and Rekab-Djabri H 2021 Mater. Today Commun. 28 102529

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadir Bouarissa.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benamrani, A., Rekab-Djabri, H., Bouarissa, N. et al. Pressure-induced effects on the mechanical and thermophysical properties of LiAl2X (X = Rh, Pd, Ir and Pt) ternary intermetallic compounds. Bull Mater Sci 47, 52 (2024). https://doi.org/10.1007/s12034-023-03124-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-023-03124-w

Keywords

Navigation