Skip to main content
Log in

On the construction of non-simple blow-up solutions for the singular Liouville equation with a potential

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We are concerned with the existence of blowing-up solutions to the following boundary value problem

$$\begin{aligned} -\Delta u= \lambda V(x) e^u-4\pi N {\varvec{\delta }}_0 \;\hbox { in } B_1,\quad u=0 \;\hbox { on }\partial B_1, \end{aligned}$$

where \(B_1\) is the unit ball in \(\mathbb {R}^2\) centered at the origin, V(x) is a positive smooth potential, N is a positive integer (\(N\ge 1\)). Here \({\varvec{\delta }}_0\) defines the Dirac measure with pole at 0, and \(\lambda >0\) is a small parameter. We assume that \(N=1\) and, under some suitable assumptions on the derivatives of the potential V at 0, we find a solution which exhibits a non-simple blow-up profile as \(\lambda \rightarrow 0^+\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Given \(F:\mathbb {R}^2\rightarrow \mathbb {R}^2\) a continuous vector filed, we say that \(\xi \) is a zero for F which is stable with respect to uniform perturbations if \(F(\xi )=0\) and for any neighborhood U of \(\xi \) and \(\epsilon >0\) there exists \(\eta >0\) such that if \(\Psi :U\rightarrow \mathbb {R}^2\) is continuous and \(\Vert \Psi -F\Vert _\infty \le \eta \), then \(\Psi \) has a zero in U. A sufficient condition which implies that 0 is a stable zero of a vector field F is \(deg(F, U, 0)\ne 0\) for some neighborhood U of \(\xi \), where deg denotes the standard Brower degree.

References

  1. Ao, W., Wang, L.: New concentration phenomena for \(SU(3)\) Toda system. J. Differ. Equ. 256, 1548–1580 (2014)

    Article  MathSciNet  Google Scholar 

  2. Baraket, S., Pacard, F.: Construction of singular limits for a semilinear elliptic equation in dimension 2. Calc. Var. Partial Differ. Equ. 6, 1–38 (1998)

    Article  MathSciNet  Google Scholar 

  3. Bartolucci, D., Chen, C.-C., Lin, C.-S., Tarantello, G.: Profile of blow-up solutions to mean field equations with singular data. Commun. Partial Differ. Equ. 29, 1241–1265 (2004)

    Article  MathSciNet  Google Scholar 

  4. Bartolucci, D., Tarantello, G.: Asymptotic blow-up analysis for singular Liouville type equations with applications. J. Differ. Equ. 262, 3887–3931 (2017)

    Article  MathSciNet  Google Scholar 

  5. Bartolucci, D., Tarantello, G.: Liouville type equations with singular data and their application to periodic multivortices for the electroweak theory. Commun. Math. Phys. 229, 3–47 (2002)

    Article  MathSciNet  Google Scholar 

  6. Bartolucci, D., Tarantello, G.: Asymptotic blow-up analysis for singular Liouville type equations with applications. J. Differ. Equ. 262, 3887–3931 (2017)

    Article  MathSciNet  Google Scholar 

  7. Brezis, H., Merle, F.: Uniform estimates and blow-up behavior for solutions of \(-\Delta u = V (x)e^u\) in two dimensions. Commun. Partial Differ. Equ. 16, 1223–1253 (1991)

    Article  Google Scholar 

  8. Chen, C.C., Lin, C.C.S.: Mean field equation of Liouville type with singular data: topological degree. Commun. Pure Appl. Math. 68, 887–947 (2015)

    Article  MathSciNet  Google Scholar 

  9. Chen, C.C., Lin, C.C.: Sharp estimates for solutions of multi-bubbles in compact Riemann surfaces. Commun. Pure Appl. Math. 55, 728–771 (2002)

    Article  MathSciNet  Google Scholar 

  10. D’Aprile, T.: Non-symmetric blowing-up solutions for a class of Liouville equations in the ball. J. Math. Phys. 63, 021506 (2022)

    Article  MathSciNet  Google Scholar 

  11. D’Aprile, T., Wei, J.: Bubbling solutions for the Liouville equation with a singular source: non-simple blow-up. J. Funct. Anal. 279, 108605 (2020)

    Article  MathSciNet  Google Scholar 

  12. D’Aprile, T., Wei, J., Zhang, L.: On non-simple blowup solutions of Liouville equation, preprint arXiv:2209.05271

  13. Del Pino, M., Esposito, P., Musso, M.: Two dimensional Euler flows with concentrated vorticities. Trans. Am. Math. Soc. 362, 6381–6395 (2010)

    Article  MathSciNet  Google Scholar 

  14. Del Pino, M., Kowalczyk, M., Musso, M.: Singular limits in Liouville-type equation. Calc. Var. Partial Differ. Equ. 24, 47–81 (2005)

    Article  MathSciNet  Google Scholar 

  15. Esposito, P., Grossi, M., Pistoia, A.: On the existence of blowing-up solutions for a mean field equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 22, 227–257 (2005)

    Article  MathSciNet  Google Scholar 

  16. Gluck, M.: Asymptotic behavior of blow up solutions to a class of prescribing Gauss curvature equations. Nonlinear Anal. 75, 5787–5796 (2012)

    Article  MathSciNet  Google Scholar 

  17. Gu, Y., Zhang, L.: Degree counting theorems for singular Liouville systems. Ann. Sc. Norm. Super. Pisa Cl. Sci. 5(21), 1103–1135 (2020)

    MathSciNet  Google Scholar 

  18. Kuo, T.J., Lin, C.S.: Estimates of the mean field equations with integer singular sources: non-simple blowup. J. Differ. Geom. 103, 377–424 (2016)

    MathSciNet  Google Scholar 

  19. Li, Y.Y.: Harnack type inequality: the method of moving planes. Commun. Math. Phys. 200, 421–444 (1999)

    Article  MathSciNet  Google Scholar 

  20. Li, Y.Y., Shafrir, I.: Blow-up analysis for solutions of \(-\Delta u = V e^u\) in dimension two. Indiana Univ. Math. J. 43, 1255–1270 (1994)

    Article  MathSciNet  Google Scholar 

  21. Ma, L., Wei, J.: Convergence for a Liouville equation. Comment. Math. Helv. 76, 506–514 (2001)

    Article  MathSciNet  Google Scholar 

  22. Moser, J.: A sharp form of an inequality by N.Trudinger. Indiana Univ. Math. J. 20, 1077–1092 (1970/71)

  23. Nagasaki, K., Suzuki, T.: Asymptotic analysis for two-dimensional elliptic eigenvalue problems with exponentially dominated nonlinearities. Asymptot. Anal. 3, 173–188 (1990)

    MathSciNet  Google Scholar 

  24. Prajapat, J., Tarantello, G.: On a class of elliptic problems in R2: symmetry and uniqueness results. Proc. R. Soc. Edinb. Sect. A 131, 967–985 (2001)

    Article  Google Scholar 

  25. Suzuki, T.: Two-dimensional Emden–Fowler equation with exponential nonlinearity. In: Nonlinear Diffusion Equations and Their Equilibrium States, 3 (Gregynog, 1989). Progress in Nonlinear Differential Equations and Their Applications, vol. 7, pp. 493–512. Birkhäuser, Boston, MA (1992)

  26. Trudinger, N.S.: On imbeddings into Orlicz spaces and some applications. J. Math. Mech. 17, 473–483 (1967)

    MathSciNet  Google Scholar 

  27. Wei, J., Ye, D., Zhou, F.: Bubbling solutions for an anisotropic Emden–Fowler equation. Calc. Var. Partial Differ. Equ. 28, 217–247 (2007)

    Article  MathSciNet  Google Scholar 

  28. Wei, J., Wu, L., Zhang, L.: Estimates of bubbling solutions of \(SU(3)\) Toda systems at critical parameters-part 2. J. Lond. Math. Soc. 2, 1–47 (2023)

    Google Scholar 

  29. Wei, J., Zhang, L.: Estimates for Liouville equation with quantized singularities. Adv. Math. 380, 107606 (2021)

    Article  MathSciNet  Google Scholar 

  30. Wei, J., Zhang, L.: Vanishing estimates for Liouville equation with quantized singularities. Proc. Lond. Math. Soc. 124, 106–131 (2022)

    Article  MathSciNet  Google Scholar 

  31. Wei, J., Zhang, L.: Laplacian vanishing theorem for quantized singular Liouville equation, preprint arXiv:2202.10825

  32. Wu, L.: Simple blow-up solutions of singular Liouville equations. Proc. Amer. Math. Soc. 152(1), 345–356 (2024)

    Article  MathSciNet  Google Scholar 

  33. Zhang, L.: Blowup solutions of some nonlinear elliptic equations involving exponential nonlinearities. Commun. Math. Phys. 268, 105–133 (2006)

    Article  MathSciNet  Google Scholar 

  34. Zhang, L.: Asymptotic behaviour of blowup solutions for elliptic equations with exponential nonlinearity and singular data. Commun. Contemp. Math. 11, 395–411 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Zhang.

Additional information

Communicated by Manuel del Pino.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The research of T. D’Aprile is partially supported by the MIUR Excellence Department Project awarded to the Department of Mathematics, University of Rome “Tor Vergata”, CUP E83C18000100006. The research of J. Wei is partially supported by NSERC of Canada. The research of Lei Zhang is partially supported by a Simons Foundation Collaboration Grant

Appendix A

Appendix A

In this appendix we derive some crucial integral estimates which arise in the asymptotic expansion of the energy of approximate solution \(PW_{\lambda }\).

Lemma A.1

The following holds:

$$\begin{aligned}{} & {} \int _{B_1}e^{W_{\lambda }} |x-b|dx=O(\delta ),\quad \int _{B_1}e^{W_{\lambda }} |x-b|^2dx=16\pi \delta ^2|\log \delta |+O(\delta ^2),\\{} & {} \int _{B_1}e^{W_{\lambda }} |x-b|^3 dx=O(\delta ^2) \end{aligned}$$

uniformly for b in a small neighborhood of 0.

Proof

We compute

$$\begin{aligned} \int _{B_1}e^{W_{\lambda }} |x-b|dx \le 8\delta \int _{{\mathbb {R}}^2}\frac{1}{(1+|z-\delta ^{-1} b|^2)^2}|z-\delta ^{-1}b|dz =8\delta \int _{{\mathbb {R}}^2}\frac{|z|}{(1+|z|^2)^2}dz \end{aligned}$$

and the first estimate follows. In order to show the second estimate let us observe that \(B(b, 1-|b|)\subset B(0,1)\subset B(b, 1+|b|)\), so we compute

$$\begin{aligned} \int _{B_1}e^{W_{\lambda }}|x-b|^2 dx&= 8\int _{B_1 }\frac{\delta ^2|x-b|^2}{(\delta ^2+|x-b|^2)^2} dx \\&=8 \int _{B(b, 1-|b|)} \frac{\delta ^2|x-b|^2}{(\delta ^2+|x-b|^2)^2}dx\\&\quad +O\bigg (\int _{ B(b, 1+|b|)\setminus B(b,1-|b|)} \frac{\delta ^2|x-b|^2}{(\delta ^2+|x-b|^2)^2}dx\bigg )\\&= 8 \int _{B(0, 1-|b|)} \frac{\delta ^2|x|^2}{(\delta ^2+|x|^2)^3}dx +O\bigg (\int _{ B(0, 1+|b|)\setminus B(0,1-|b|)} \frac{\delta ^2|x|^2}{(\delta ^2+|x|^2)^2}dx\bigg )\\&=8\delta ^2\int _{|z|\le \frac{1-|b|}{\delta }} \frac{|z|^2}{(1+|z|^2)^2}dz+O\bigg (\delta ^2 \int _{ \frac{1-|b|}{\delta }\le |z|\le \frac{1+|b|}{\delta }}\frac{1}{|z|^2}dz\bigg ) \\&=8\delta ^2\int _{|z|\le \frac{1-|b|}{\delta }} \frac{1}{1+|z|^2}dz+O(\delta ^2)\\&=16\pi \delta ^2|\log \delta |+O(\delta ^2). \end{aligned}$$

In order to prove the third estimate, let \(R>1\) so that \( B(0,1) \subset B(b, R)\) if b lies in a small neighborhood of 0. Then,

$$\begin{aligned} \int _{B_1}e^{W_{\lambda }} |x-b|^3dx&=8\delta ^{3}\int _{|z| \le \frac{1 }{\delta }} \frac{1}{(1+|z-\delta ^{-1} b|^2)^2}|z-\delta ^{-1}b|^3dz\\&\le 8\delta ^{3}\int _{B(0,\frac{R}{\delta })} \frac{|z|^3}{(1+|z|^2)^2}dz \le C\delta ^{2}. \end{aligned}$$

\(\square \)

Since the key part in the proof of Theorem 2.1 relies in testing the Eq. (5.1) with \(PZ_\lambda ^i\) in order to catch the leading terms, a crucial step consists in the evaluation of some integral estimates, as provided by the following lemma.

Lemma A.2

The following holds for \(i,j=1,2\):

$$\begin{aligned}{} & {} \int _{B_1}e^{W_{\lambda }} PZ^i_\lambda dx =O(\delta ),\\{} & {} \int _{B_1}e^{W_{\lambda }} PZ^i_\lambda ( x_i-b_i)dx=2 \pi \delta +O(\delta ^{2}),\\{} & {} \int _{B_1}e^{W_{\lambda }} PZ^i_\lambda (x_j-b_j)dx=O(\delta ^{2})\quad i\ne j,\\{} & {} \int _{B_1}e^{W_{\lambda }} |PZ^i_\lambda || x-b|^2dx=O(\delta ^{2}), \\{} & {} \int _{B_1}e^{W_{\lambda }} PZ^i_\lambda (x_i-b_i)^3dx=6\pi \delta ^3 \log \frac{1}{\delta }+O(\delta ^3)\\{} & {} \int _{B_1}e^{W_{\lambda }} PZ^i_\lambda (x_j-b_j)^3dx=O(\delta ^3)\quad i\ne j,\\{} & {} \int _{B_1}e^{W_{\lambda }} PZ^i_\lambda (x_j-b_j)^2( x_i-b_i)dx =2\pi \delta ^3\log \frac{1}{\delta }+O(\delta ^3) \quad i\ne j,\\{} & {} \int _{B_1}e^{W_{\lambda }} PZ^i_\lambda (x_i-b_i)^2( x_j-b_j)dx=O (\delta ^3) \quad i\ne j,\\{} & {} \int _{B_1}e^{W_{\lambda }} |PZ^i_\lambda || x-b|^{\frac{7}{2}}dx=O(\delta ^{3}) \end{aligned}$$

uniformly for b in a small neighborhood of 0.

Proof

We compute

$$\begin{aligned} \int _{B_1}e^{W_{\lambda }} Z^i_\lambda dx&=8\int _{|z|\le \frac{1}{\delta }} \frac{1}{(1+|z-\delta ^{-1}b|^2)^3}(z_i-\delta ^{-1}b_i) dz\\&=8\int _{{\mathbb {R}}^2}\frac{1}{(1+|z-\delta ^{-1}b|^2)^3}(z_i-\delta ^{-1}b_i) dz+O(\delta ^{3})\\&=8\int _{{\mathbb {R}}^2}\frac{z_i}{(1+|z|^2)^3} dz+O(\delta ^{3}) =O(\delta ^3), \end{aligned}$$

since \(\int _{{\mathbb {R}}^2}\frac{z_i}{(1+|z||^2)^3} dz=0\) by oddness. Next

$$\begin{aligned} \int _{B_1}e^{W_{\lambda }} Z^i_\lambda (x_i-b_i)dx&=8\delta \int _{|z| \le \frac{1 }{\delta }}\frac{1}{(1+|z-\delta ^{-1}b|^2)^3} (z_i-\delta ^{-1}b_i)^2 dz \\&=8\delta \int _{{\mathbb {R}}^2}\frac{1}{(1+|z-\delta ^{-1}b|^2)^3} (z_i-\delta ^{-1}b_i)^2 dz+O(\delta ^{3}) \\&= 8 \delta \int _{{\mathbb {R}}^2}\frac{z_i^2}{(1+|z|^2)^3}dz+O(\delta ^{3})=2\pi \delta +O(\delta ^{3}) \end{aligned}$$

where we have used the identity \(\int _{{\mathbb {R}}^2}\frac{(z_i)^2}{(1+|z|^2)^3} =\frac{1}{2} \int _{{\mathbb {R}}^2}\frac{|z|^2}{(1+|z|^2)^3} =\frac{\pi }{4} \). Similarly for \(i\ne j\)

$$\begin{aligned} \int _{B_1}e^{W_{\lambda }} Z^i_\lambda (x_j-b_j)dx = 8 \delta \int _{{\mathbb {R}}^2}\frac{z_iz_j}{(1+|z|^2)^3}dz+O(\delta ^{3})=O(\delta ^{3}) \end{aligned}$$

since \(\int _{{\mathbb {R}}^2}\frac{z_iz_j}{(1+|z|^2)^3}dz=0. \) Next,

$$\begin{aligned} \int _{B_1}e^{W_{\lambda }} |Z^i_\lambda || x-b|^2dx \le 8\delta ^2\int _{{\mathbb {R}}^2}\frac{|x-b|^3}{(\delta ^2+|x- b|^2)^3}dx =8\delta ^2 \int _{{\mathbb {R}}^2}\frac{|z|^3}{(1+|z|^2)^3}dz\le C\delta ^2. \end{aligned}$$

Using that \(B(b, 1-|b|)\subset B(0,1)\subset B(b, 1+|b|)\), we compute

$$\begin{aligned}&\int _{B_1}e^{W_{\lambda }} Z^i_\lambda (x_i-b_i)^3dx\\&\quad = 8\delta ^3\int _{B_1 }\frac{(x_i-b_i)^4}{(\delta ^2+|x-b|^2)^3}dx\\&\quad = 8\delta ^3\int _{B(b, 1-|b|)} \frac{(x_i-b_i)^4}{(\delta ^2+|x-b|^2)^3}dx +O\bigg (\delta ^3\int _{ B(b, 1+|b|) \setminus B(b,1-|b|)}\frac{|x-b|^4}{(\delta ^2+|x-b|^2)^3}dx\bigg )\\&\quad = 8\delta ^3 \int _{B(0, 1-|b|)} \frac{( x_i)^4}{(\delta ^2+|x|^2)^3}dx +O\bigg (\delta ^3\int _{ B(0, 1+|b|)\setminus B(0,1-|b|)}\frac{|x|^4}{(\delta ^2+|x|^2)^3}dx\bigg )\\&\quad = 8\delta ^3\int _{|z|\le \frac{1-|b|}{\delta }} \frac{(z_i)^4}{(1+|z|^2)^3}dz+O(\delta ^3)\\&\quad =6\pi \delta ^3|\log \delta |+O(\delta ^3) \end{aligned}$$

where we have used the identity \(\int _{|z|\le r} \frac{(z_i)^4}{(1+|z|^2)^3}dz=\frac{3}{8}\pi \log (1+r^2) +\frac{3}{4}\frac{\pi }{1+r^2}-\frac{3}{16}\frac{\pi }{(1+r^2)^2} -\frac{9}{16}\pi \).

Similarly, for \(i\ne j\)

$$\begin{aligned} \int _{B_1}e^{W_{\lambda }} Z^i_\lambda (x_j-b_j)^3dx =8\delta ^3\int _{|z|\le \frac{1-|b|}{\delta }} \frac{z_i(z_j)^3}{(1+|z|^2)^3}dz+O(\delta ^3) =O(\delta ^3) \end{aligned}$$

since \(\int _{|z|\le r} \frac{z_i(z_j)^3}{(1+|z|^2)^3}dz=0\).

Next, for \(i\ne j\)

$$\begin{aligned} \int _{B_1}e^{W_{\lambda }} Z^i_\lambda (x_j-b_j)^2( x_i-b_i)dx&=8\delta ^3\int _{|z|\le \frac{1-|b|}{\delta }} \frac{(z_i)^2(z_j)^2}{(1+|z|^2)^3}dz+O(\delta ^3)\\&=2\pi \delta ^3|\log \delta |+O(\delta ^3) \end{aligned}$$

where the last equality follows by \(\int _{|z|\le r} \frac{(z_i)^2(z_j)^2}{(1+|z|^2)^3}dz =\frac{\pi }{8}\log (1+r^2)+\frac{1}{4} \frac{\pi }{1+r^2}-\frac{1}{16}\frac{\pi }{(1+r^2)^2}-\frac{3}{16}\pi \). Similarly for \(i\ne j\)

$$\begin{aligned} \int _{B_1}e^{W_{\lambda }} Z^i_\lambda (x_i-b_i)^2( x_j-b_j)dx =8\delta ^3\int _{|z|\le \frac{1-b}{\delta }} \frac{(z_i)^3z_j}{(1+|z|^2)^3}dz+O(\delta ^3) =O(\delta ^3) \end{aligned}$$

by \(\int _{|z|\le r} \frac{(z_i)^3z_j}{(1+|z|^2)^3}dz=0\). Finally

$$\begin{aligned}&\int _{B_1}e^{W_{\lambda }} |Z^i_\lambda || x-b|^{\frac{7}{2}}dx \le 8\delta ^2\int _{B(b, 1+|b|)} \frac{\delta |x-b|^{\frac{9}{2}}}{(\delta ^2+|x- b|^2)^3}dx \\&\quad =8\delta ^{\frac{7}{2}}\int _{|z| \le \frac{1+|b|}{\delta }} \frac{|z|^{\frac{9}{2}}}{(1+|z|^2)^3}dz\le C\delta ^3. \end{aligned}$$

Taking into account that \(PZ^i_\lambda =Z^i_\lambda +O(\delta )\) by (3.2), and recalling Lemma A.1, the above integral estimates give the thesis. \(\square \)

In order to derive next integral estimate we need to expand the projections \(PZ_\lambda ^i\) to a higher order with respect to (3.2).

Lemma A.3

For \(i=1,2\) the following holds:

$$\begin{aligned} PZ_\lambda ^i= Z_\lambda ^i (x)-\delta (x_i-b_i)+O(\delta ^3)+O(\delta | b|)\hbox { in } B_1 \end{aligned}$$

uniformly for b in a small neighborhood of 0.

Proof

Let us consider \(i=1\). Observe that

$$\begin{aligned} \hbox {if } |x|=1: \;\;Z_\lambda ^1(x)&=\frac{\delta (x_1-b_1)}{\delta ^2+|x-b|^2} =\frac{\delta (x_1-b_1)}{1+\delta ^2+O(|b|)}\\&=\delta (x_1-b_1)\Big (1+O(|b|)+O(\delta ^2) \Big )\\&=\delta (x_1-b_1)+ O(|b|\delta )+O(\delta ^3) . \end{aligned}$$

Therefore, if we set

$$\begin{aligned} \hat{Z}_\lambda ^1:= Z_\lambda ^1 (x)-\delta (x_1-b_1), \end{aligned}$$

we get

$$\begin{aligned} \hat{Z}_\lambda ^1(x)=O(\delta ^3)+O(\delta | b|) \hbox { if }|x|=1 \end{aligned}$$

and

$$\begin{aligned} -\Delta \hat{Z}_\lambda ^1 (x)=-\Delta Z_\lambda ^1(x) =\Delta PZ_\lambda ^1(x) \hbox { in }B_1. \end{aligned}$$

Hence, since by construction \(PZ_\lambda ^1=0\) for \(|x|=1\), the maximum principle applies and gives

$$\begin{aligned} PZ_\lambda ^1= \hat{Z}_\lambda ^1 +O(\delta ^3)+O(\delta | b|) =Z_\lambda ^1 (x)-\delta (x_1-b_1)+O(\delta ^3)+O(\delta |b|)\hbox { in } B_1. \end{aligned}$$

\(\square \)

Lemma A.4

Let P be a homogeneous polynomial of degree 2. Then the following holds:

$$\begin{aligned} \int _{B_1}e^{W_{\lambda }} PZ^i_\lambda P(x-b)dx=O(\delta ^3) +O(\delta ^2 |b|)\quad i=1,2 \end{aligned}$$

uniformly for b in a small neighborhood of 0.

Proof

We compute

$$\begin{aligned} \int _{B_1}e^{W_{\lambda }} Z^i_\lambda P(x-b) dx&= 8\delta ^2\int _{|z|\le \frac{1 }{\delta }} \frac{P(z-\delta ^{-1}b)}{(1+|z-\delta ^{-1} b|^2)^3}(z_i-\delta ^{-1}b_i) dz\nonumber \\&= 8\delta ^2\int _{{\mathbb {R}}^2}\frac{P(z)}{(1+|z|^2)^3}z_idz+O(\delta ^3)=O(\delta ^3) \end{aligned}$$
(A.1)

where we have used that \(\int _{{\mathbb {R}}^2}\frac{P(z)}{(1+|z|^2)^3}z_idz=0\) by oddness. Taking into account of Lemma A.3 we get

$$\begin{aligned} \int _{B_1}e^{W_{\lambda }} PZ^i_\lambda P(x-b) dx&= \int _{B_1}e^{W_{\lambda }} Z^i_\lambda P(x-b) dx-\delta \int _{B_1}e^{W_{\lambda }} (x_i-b_i) P(x-b) dx\\&\quad + \Big (O(\delta ^3)+O(\delta |b|)\Big ) \int _{B_1}e^{W_{\lambda }} |x-b|^2 dx\\&= \int _{B_1}e^{W_{\lambda }} Z^i_\lambda P(x-b) dx+O(\delta ) \int _{B_1}e^{W_{\lambda }} |x -b|^3 dx\\&\quad + \Big (O(\delta ^3)+O(\delta |b|)\Big ) \int _{B_1}e^{W_{\lambda }} |x-b|^2 dx \end{aligned}$$

and the thesis follows by (A.1), and recalling Lemma A.1. \(\square \)

Finally we deduce some integral identities associated to the change of variable \(x\mapsto x^\alpha \) which appears frequently when dealing with \(\alpha \)-symmetric functions.

Lemma A.5

Let \(\alpha \in \mathbb {N}\), \(\alpha \ge 2\), and let \(f\in L^1(B_1)\). Then we have that \(|x|^{2(\alpha -1)}f(x^\alpha )\in L^1(B_1) \) and

$$\begin{aligned} \int _{B_1} |x|^{2(\alpha -1)} f(x^\alpha ) dx=\frac{1}{\alpha }\int _{B_1} f(y)dy. \end{aligned}$$

Proof

It is sufficient to prove the thesis for a smooth function f. Using the polar coordinates \((\rho ,\theta )\) and then applying the change of variables \((\rho ',\theta ')=(\rho ^\alpha ,\alpha \theta )\)

$$\begin{aligned} \int _{B_1} |x|^{2(\alpha -1)} f(x^\alpha ) dx&=\int _0^{+\infty } d\rho \int _0^{2\pi } \rho ^{2\alpha -1}f(\rho ^\alpha e^{\textrm{i}\alpha \theta }) d\theta \\&= \frac{1}{\alpha ^2}\int _0^{+\infty } d\rho ' \int _0^{2\alpha \pi } \rho 'f(\rho ' e^{\textrm{i}\theta '}) d\theta ' \\&=\frac{1}{\alpha }\int _0^{+\infty } d\rho '\int _0^{2\pi } \rho '|f(\rho ' e^{\textrm{i}\theta '})|^2 d\theta '\\&=\frac{1}{\alpha }\int _{B_1}f(y) dy. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

D’Aprile, T., Wei, J. & Zhang, L. On the construction of non-simple blow-up solutions for the singular Liouville equation with a potential. Calc. Var. 63, 68 (2024). https://doi.org/10.1007/s00526-024-02676-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-024-02676-x

Mathematics Subject Classification

Navigation