Skip to main content
Log in

Norm convergence of confined fermionic systems at zero temperature

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

The semi-classical limit of ground states of large systems of fermions was studied by Fournais et al. (Calc Var Partial Differ Equ 57:105, 2018). In particular, the authors prove weak convergence toward classical states associated with the minimizers of the Thomas–Fermi functional. In this paper, we revisit this limit and show that under additional assumptions—and, using simple arguments—it is possible to prove that strong convergence holds in relevant normed spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

This manuscript has no associated data.

References

  1. Bach, V.: Hartree–Fock Theory, Lieb’s Variational Principle, and Their Generalizations. arXiv:2209.10189

  2. Benedikter, N.: Effective dynamics of interacting fermions from semiclassical theory to the random phase approximation. J. Math. Phys. 63(8), 081101 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  3. Benedikter, N., Porta, M., Schlein, B.: Mean-field evolution of fermionic systems. Commun. Math. Phys. 331, 1087–1131 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  4. Benedikter, N., Porta, M., Saffirio, C., Schlein, B.: From the Hartree dynamics to the Vlasov equation. Arch. Ration. Mech. Anal. 221, 273–334 (2016)

    Article  MathSciNet  Google Scholar 

  5. Benedikter, N., Jakšić, V., Porta, M., Saffirio, C., Schlein, B.: Mean-field evolution of fermionic mixed states. Commun. Pure Appl. Math. 69, 2250–2303 (2016)

    Article  MathSciNet  Google Scholar 

  6. Christiansen, M.R.: Hilbert–Schmidt estimates for fermionic 2-body operators. Commun. Math. Phys. 405, 1–9 (2024)

    Article  MathSciNet  Google Scholar 

  7. Combescure, M., Robert, D.: Coherent States and Applications in Mathematical Physics. Theoretical and Mathematical Physics. Springer, Dordrecht (2012)

    Google Scholar 

  8. Fermi, E.: Un metodo statistico per la determinazione di alcune priorieta dell’atome. Rend. Accad. Naz. Lincei 6, 602–607 (1927)

    Google Scholar 

  9. Fournais, S., Madsen, P.S.: Semi-classical limit of confined fermionic systems in homogeneous magnetic fields. Ann. Henri Poincaré 21, 1401–1449 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  10. Fournais, S., Mikkelsen, S.: An optimal semiclassical bound on commutators of spectral projections with position and momentum operators. Lett. Math. Phys. 110, 3343–3373 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  11. Fournais, S., Lewin, M., Solovej, J.P.: The semi-classical limit of large fermionic systems. Calc. Var. Partial Differ. Equ. 57, 105 (2018)

    Article  MathSciNet  Google Scholar 

  12. Fresta, L., Porta, M., Schlein, B.: Effective dynamics of extended fermi gases in the high-density regime. Commun. Math. Phys. 401, 1701–1751 (2023)

    Article  ADS  MathSciNet  Google Scholar 

  13. Girardot, T., Rougerie, N.: Semiclassical limit for almost fermionic anyons. Commun. Math. Phys. 387, 427–480 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  14. Gottschling, N., Nam, P.T.: Convergence of Levy–Lieb to Thomas–Fermi density functional. Calc. Var. 57, 146 (2018)

    Article  MathSciNet  Google Scholar 

  15. Lafleche, L.: Optimal Semiclassical Regularity of Projection Operators and Strong Weyl Law. arXiv:2302.04816

  16. Lewin, M., Nam, P.T., Rougerie, N.: Derivation of Hartree’s theory for generic mean-field Bose systems. Adv. Math. 254, 570–621 (2014)

    Article  MathSciNet  Google Scholar 

  17. Lewin, M., Madsen, P.S., Triay, A.: Semi-classical limit of large fermionic systems at positive temperature. J. Math. Phys. 60(9), 091901 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  18. Lieb, E., Seiringer, R.: The Stability of Matter in Quantum Mechanics. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  19. Lieb, E.H., Simon, B.: Thomas–Fermi theory revisited. Phys. Rev. Lett. 31, 681 (1973)

    Article  ADS  Google Scholar 

  20. Lieb, E.H., Simon, B.: The Thomas–Fermi theory of atoms, molecules and solids. Adv. Math. 23, 22–116 (1977)

    Article  MathSciNet  Google Scholar 

  21. Nguyen, N.N.: Weyl laws for interacting particles. arXiv:2305.06237

  22. Solovej, J.P.: Many Body Quantum Mechanics (2014)

  23. Thomas, L.H.: The calculation of atomic fields. Proc. Camb. Philos. Soc. 23, 542–548 (1927)

    Article  ADS  Google Scholar 

  24. Toscani, G., Villani, C.: Probability metrics and uniqueness of the solution to the Boltzmann equation for a Maxwell gas. J. Stat. Phys. 94, 619–637 (1999)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

I am grateful to J.K Miller and N. Pavlović for discussions that ultimately led to the study of the problem in this article. I am also very thankful to D. Hundertmark for his comments that helped improve an earlier version of this manuscript. I would also like to acknowledge important remarks from two anonymous referees that helped significantly improve the conclusion of Theorem 1, covering now the additional range \( p \in (2, \infty )\). The author gratefully acknowledges support from the Provost’s Graduate Excellence Fellowship at The University of Texas at Austin and from the NSF Grant DMS-2009549, and the NSF Grant DMS-2009800 through T. Chen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esteban Cárdenas.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cárdenas, E. Norm convergence of confined fermionic systems at zero temperature. Lett Math Phys 114, 38 (2024). https://doi.org/10.1007/s11005-024-01785-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11005-024-01785-0

Navigation