Skip to main content
Log in

Application of the Mixing Rule to Evaluation of the Thermophysical Properties of Amorphous Fe80B20 Alloy

  • Published:
Inorganic Materials Aims and scope

Abstract—

Experimental temperature-dependent density data for boron have been used to evaluate its linear thermal expansion coefficient. Applying the mixing rule to components of amorphous alloy, we have estimated the thermophysical properties of amorphous Fe80B20 alloy in the locally equilibrium two-phase region model. The dominant role of iron atoms in the formation of a disordered medium has been demonstrated. The theoretical results obtained in this study are prognostic and require experimental verification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Buschow, K.H.J. and Beekmans, N.M., Thermal stability of amorphous alloys, Solid State Commun., 1980, vol. 35, no. 3, pp. 233–236. https://doi.org/ (80)90487-1https://doi.org/10.1016/0038-1098

  2. Buschow, K.H.J., Thermal stability of amorphous alloys, J. Phys. Colloques, 1980, vol. 41 (C8), pp. C8-559‒C8-562. https://doi.org/10.1051/jphyscol:19808140.jpa-00220239

  3. Lysov, V.I., Tsaregradskaya, T.L., Turkov, O.V., and Saenko, G.V., General aspects of aging of metallic glasses, Uch. Zap. Tavrichesk. Nats. Univ. im. V. I. Vernadskogo, Ser. Fiz., 2009, vol. 22 (61), no. 1, pp. 142–148.

  4. Popel, P.S., Sidorova, V.E., Calvo-Dahlborg, M., Dahlborg, U., and Molokanov, V.V., Effect of heat treatment of a liquid alloy on its properties in a molten state and after amorphization, Rasplavy, 2020, no. 3, pp. 223–245. https://doi.org/10.31857/S023501062003007X

  5. Abrosimova, G.E., Aronin, A.S., Dobatkin, S.V., Zver’kova, I.I., Matveev, D.V., Rybchenko, O.G., and Tat’yanin, E.V., Nanocrystallization of an amorphous Fe80B20 alloy during severe plastic deformation, Phys. Solid State, 2007, vol. 49, no. 6, pp. 1034–1039. https://doi.org/10.1134/S1063783407060029

    Article  ADS  CAS  Google Scholar 

  6. Sheludyak, Yu.E., Kashporov, L.Ya., Malinin, L.A., and Tsalkov, V.N., Teplofizicheskie svoistva komponentov goryuchikh sistem (Thermophysical Properties of Components of Combustible Systems), Silin, N.A., Ed., Moscow: NPO Informatsiya i Tekhniko-Ekonomicheskie Issledovaniya, 1992.

    Google Scholar 

  7. Valenchik, L., Gushchin, V.S., Abramov, V.O., Dement’ev, A.P., Evdokimenko, O.A., and Leonenko, V.S., Magneto-optical and Auger spectroscopy of amorphous and crystalline Fe80–xNixB20 alloys, Vestn. Mosk. Gos. Univ., Ser. 3: Fiz. Astronom., 1987, vol. 28, no. 5, pp. 62–66.

    Google Scholar 

  8. Kingery, W.D., Introduction to Ceramics, New York: Wiley, 1965. Translated under the title Vvedenie v keramiku, Moscow: Stroiizdat, 1967, p. 325.

    Google Scholar 

  9. Terekhov, S.V., Thermodynamic model for a broad phase transition in Fe40Ni40P14B6 metallic glass, Fiz. Tekh. Vys. Davl., 2018, vol. 28, no. 1, pp. 54–61.

    CAS  Google Scholar 

  10. Terekhov, S.V., Single- and multistage crystallization of amorphous alloys, Phys. Met. Metallogr., 2020, vol. 121, no. 7, pp. 664–669. https://doi.org/10.1134/S0031918X20070108

    Article  ADS  CAS  Google Scholar 

  11. Terekhov, S.V., Thermal properties of matter within the model of a two-phase system, Phys. Solid State, 2022, vol. 64, no. 8, pp. 1089–1095.

    Article  Google Scholar 

  12. Terekhov, S.V., Teploemkost’ i teplovoe rasshirenie veshchestva. Spravochnik (Heat Capacity and Thermal Expansion of Substances: A Handbook), Donetsk: DonFTI im. A.A. Galkina, 2022.

  13. Terekhov, S.V., Thermal properties of substances, Fiz. Tekh. Vys. Davl., 2022, vol. 32, no. 3, pp. 21–34.

    CAS  Google Scholar 

  14. Terekhov, S.V., Teplovye svoistva metallov. Spravochnik (Thermal Properties of Metals: A Handbook), Donetsk: DonFTI im. A.A. Galkina, 2023.

  15. Novitskii, L.A. and Kozhevnikov, I.G., Teplofizicheskie svoistva materialov pri nizkikh temperaturakh. Spravochnik (Low-Temperature Thermophysical Properties of Materials: A Handbook), Moscow: Mashinostroenie, 1975.

  16. Zinov’ev, V.E., Teplofizicheskie svoistva metallov pri vysokikh temperaturakh (High-Temperature Thermophysical Properties of Metals), Moscow: Metallurgiya, 1989.

  17. Dorogokupets, P.I., Sokolova, T.S., Danilov, B.S., and Litasov, K.D., Almost absolute equations of state of diamond, Ag, Al, Au, Cu, Mo, Nb, Pt, Ta, and W under quasi-hydrostatic conditions, Geodin. Tektonofiz., 2012, vol. 3, no. 2, pp. 129–166. https://doi.org/10.5800/GT-2012-3-2-0067

    Article  Google Scholar 

  18. Desai, P.D., Thermodynamic properties of iron and silicon, J. Phys. Chem. Ref. Data, 1986, vol. 15, no. 3, pp. 967–983. https://doi.org/10.1063/1.555761

    Article  ADS  CAS  Google Scholar 

  19. Novikova, S.I., Teplovoe rasshirenie tverdykh tel (Thermal Expansion of Solids), Moscow: Nauka, 1974.

  20. Petrunin G.I., Popov V.G. Teplofizicheskie svoistva veshchestva Zemli (Thermophysical Properties of the Earth’s Substance), Moscow: Mosk. Gos. Univ., 2011.

  21. Teplofizicheskie svoistva titana i ego splavov. Spravochnik (Thermophysical Properties of Titanium and Its Alloys: A Handbook), Peletskii, V.E., Chekhovskoi, V.Ya., and Bel’skaya, E.A., Eds., Moscow: Metallurgiya, 1985.

  22. Babichev, A.P., Babushkina, N.A., Bratkovskii, A.M, et al., Fizicheskie velichiny. Spravochnik (Physical Quantities: A Handbook), Grigor’ev, I.S. and Meilikhov, E.Z., Eds., Moscow: Energoatomizdat, 1991.

  23. Larikov, L.N. and Yurchenko, Yu.F., Struktura i svoistva metallov i splavov. Teplovye svoistva metallov i splavov (Structure and Properties of Metals and Alloys: Thermal Properties of Metals and Alloys), Kiev: Naukova Dumka, 1985.

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Terekhov.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Terekhov, S.V. Application of the Mixing Rule to Evaluation of the Thermophysical Properties of Amorphous Fe80B20 Alloy. Inorg Mater 59, 926–931 (2023). https://doi.org/10.1134/S0020168523090145

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168523090145

Keywords:

Navigation