Skip to main content
Log in

Hyperbolic Sine Optimizer: a new metaheuristic algorithm for high performance computing to address computationally intensive tasks

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

In recent decades, the demand for optimization techniques has grown due to rising complexity in real-world problems. Hence, this work introduces the Hyperbolic Sine Optimizer (HSO), an innovative metaheuristic specifically designed for scientific optimization. Unlike conventional approaches, HSO takes a unique approach by engaging individual members of the population, ensuring a comprehensive exploration of solution spaces. Employing distinctive exploration and exploitation phases, coupled with hyperbolic \(sinh\) function convergence, the optimizer enhances speed, simplify parameter adjustment, alleviates slow convergence, and demonstrates efficiency in high-dimensional optimization. This approach is designed to tackle optimization challenges and enhance adaptability in unpredictable real-world scenarios. The evaluation of HSO's performance unfolds through four distinct testing phases. Initially, a set of 65 widely recognized benchmark functions is employed. These functions cover both unimodal and multi-modal varieties across dimensions of 30, 100, 500, and 1000, including fixed-dimensional functions, to comprehensively assess the exploration, exploitation, local optima avoidance, and convergence capabilities of the proposed algorithm. The results of the HSO algorithm are then compared to those of 15 state-of-the-art metaheuristic algorithms and 8 recently published algorithms. Secondly, HSO's performance is assessed in comparison with the benchmark suite from the Institute of Electrical and Electronics Engineers (IEEE) Congress on Evolutionary Computation (CEC). This suite includes 15 benchmark functions for CEC-2015 and an additional 30 benchmark functions for CEC-2017. During the third phase, HSO tackles seven real-world classical engineering design problems by addressing both the constrained and unconstrained optimization challenges of IEEE CEC-2020. Finally, HSO undertakes training for a multilayer perceptron, utilizing four distinct datasets. To qualitatively assess HSO's performance, two statistical analyses—the Friedman and T tests—are employed. The findings of HSO showcase its adaptability and effectiveness as a high-performing optimizer in engineering optimization challenges. Note that the source code of the HSO algorithm are publicly accessible via https://github.com/Shivankur07/Hyperbolic-Sine-Optimizer.git.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Algorithm 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Dinesh-Babu, L.D., Venkata Krishna, P.: Honey bee behavior inspired load balancing of tasks in cloud computing environments. Appl Soft Comput 13(5), 2292–2303 (2013). https://doi.org/10.1016/j.asoc.2013.01.025

    Article  Google Scholar 

  2. Li, K., Xu, G., Zhao, G., Dong, Y., Wang, D.: Cloud task scheduling based on load balancing ant colony optimization,” In: 2011 Sixth Annual Chinagrid Conference, 2011, pp. 3–9. doi: https://doi.org/10.1109/ChinaGrid.2011.17

  3. Goh, A.T.C.: Back-propagation neural networks for modeling complex systems. Artif. Intell. Eng. 9(3), 143–151 (1995). https://doi.org/10.1016/0954-1810(94)00011-S

    Article  Google Scholar 

  4. Pedrycz, W.: Fuzzy sets in pattern recognition: methodology and methods. Pattern Recognit. 23(1), 121–146 (1990). https://doi.org/10.1016/0031-3203(90)90054-O

    Article  ADS  Google Scholar 

  5. Yin, P.-Y.: A fast scheme for optimal thresholding using genetic algorithms. Signal Process. 72(2), 85–95 (1999). https://doi.org/10.1016/S0165-1684(98)00167-4

    Article  Google Scholar 

  6. Moghadam, A., Seifi, A.R.: Fuzzy-TLBO optimal reactive power control variables planning for energy loss minimization. Energy Convers. Manag. (2014). https://doi.org/10.1016/j.enconman.2013.09.036

    Article  Google Scholar 

  7. Abdel-Basset, M., Mohamed, R., Jameel, M., Abouhawwash, M.: Spider wasp optimizer: a novel meta-heuristic optimization algorithm. Artif. Intell. Rev. 56(10), 11675–11738 (2023). https://doi.org/10.1007/s10462-023-10446-y

    Article  Google Scholar 

  8. Kaveh, A., Zolghadr, A.: Cyclical parthenogenesis algorithm: a new meta-heuristic algorithm. Asian J. Civ. Eng. 18(5), 673–701 (2017)

    Google Scholar 

  9. Ettappan, M., Vimala, V., Ramesh, S., Kesavan, V.T.: Optimal reactive power dispatch for real power loss minimization and voltage stability enhancement using Artificial Bee Colony Algorithm. Microprocess. Microsyst. 76, 103085 (2020). https://doi.org/10.1016/j.micpro.2020.103085

    Article  Google Scholar 

  10. Kennedy, J., Eberhart, R.: Particle swarm optimization, In: Proceedings of ICNN’95 - International conference on neural networks, vol. 4, pp. 1942–1948, (1995) doi: https://doi.org/10.1109/ICNN.1995.488968.

  11. Dorigo, M., Di Caro G.: Ant colony optimization: a new meta-heuristic, In: Proceedings of the 1999 congress on evolutionary computation-CEC99 (Cat. No. 99TH8406), (1999), vol. 2, pp. 1470–1477

  12. Karaboga, D., Basturk, B.: Artificial bee colony (ABC) optimization algorithm for solving constrained optimization problems, vol. 4529, pp. 789–798. (2007) doi https://doi.org/10.1007/978-3-540-72950-1_77.

  13. Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014). https://doi.org/10.1016/j.advengsoft.2013.12.007

    Article  Google Scholar 

  14. Mirjalili, S., Lewis, A.: The whale optimization algorithm. Adv. Eng. Softw. 95, 51–67 (2016). https://doi.org/10.1016/j.advengsoft.2016.01.008

    Article  Google Scholar 

  15. Mirjalili, S., Gandomi, A.H., Mirjalili, S.Z., Saremi, S., Faris, H., Mirjalili, S.M.: Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv. Eng. Softw. 114, 163–191 (2017). https://doi.org/10.1016/j.advengsoft.2017.07.002

    Article  Google Scholar 

  16. Heidari, A.A., Mirjalili, S., Faris, H., Aljarah, I., Mafarja, M., Chen, H.: Harris hawks optimization: algorithm and applications. Futur. Gener. Comput. Syst. 97, 849–872 (2019). https://doi.org/10.1016/j.future.2019.02.028

    Article  Google Scholar 

  17. Faramarzi, A., Heidarinejad, M., Mirjalili, S., Gandomi, A.H.: Marine predators algorithm: a naturE−inspired metaheuristic. Expert Syst. Appl. 152, 113377 (2020). https://doi.org/10.1016/j.eswa.2020.113377

    Article  Google Scholar 

  18. Dhiman, G., Kumar, V.: Seagull optimization algorithm: theory and its applications for largE−scale industrial engineering problems. KnowledgE−Based Syst. 165, 169–196 (2019). https://doi.org/10.1016/j.knosys.2018.11.024

    Article  Google Scholar 

  19. Wang, G.-G., Deb, S., Cui, Z.: Monarch butterfly optimization. Neural Comput. Appl. 31(7), 1995–2014 (2019). https://doi.org/10.1007/s00521-015-1923-y

    Article  Google Scholar 

  20. Yazdani, M., Jolai, F.: Lion optimization algorithm (LOA): a naturE−inspired metaheuristic algorithm. J. Comput. Des. Eng. 3(1), 24–36 (2016). https://doi.org/10.1016/j.jcde.2015.06.003

    Article  Google Scholar 

  21. Kallioras, N.A., Lagaros, N.D., Avtzis, D.N.: Pity beetle algorithm – a new metaheuristic inspired by the behavior of bark beetles. Adv. Eng. Softw. 121, 147–166 (2018). https://doi.org/10.1016/j.advengsoft.2018.04.007

    Article  Google Scholar 

  22. Jain, M., Singh, V., Rani, A.: A novel naturE−inspired algorithm for optimization: squirrel search algorithm. Swarm Evol. Comput. 44, 148–175 (2019). https://doi.org/10.1016/j.swevo.2018.02.013

    Article  Google Scholar 

  23. Arora, S., Singh, S.: Butterfly optimization algorithm: a novel approach for global optimization. Soft. Comput. 23(3), 715–734 (2019). https://doi.org/10.1007/s00500-018-3102-4

    Article  Google Scholar 

  24. Li, S., Chen, H., Wang, M., Heidari, A.A., Mirjalili, S.: Slime mould algorithm: a new method for stochastic optimization. Futur. Gener. Comput. Syst. 111, 300–323 (2020). https://doi.org/10.1016/j.future.2020.03.055

    Article  Google Scholar 

  25. Mohammadi-Balani, A., Dehghan Nayeri, M., Azar, A., Taghizadeh-Yazdi, M.: Golden eagle optimizer: a naturE−inspired metaheuristic algorithm. Comput. Ind. Eng. 152, 107050 (2021). https://doi.org/10.1016/j.cie.2020.107050

    Article  Google Scholar 

  26. Połap, D., Woźniak, M.: Red fox optimization algorithm. Expert Syst. Appl. 166, 114107 (2021). https://doi.org/10.1016/j.eswa.2020.114107

    Article  Google Scholar 

  27. Zamani, H., Nadimi-Shahraki, M.H., Gandomi, A.H.: Starling murmuration optimizer: a novel bio-inspired algorithm for global and engineering optimization. Comput. Methods Appl. Mech. Eng. 392, 114616 (2022). https://doi.org/10.1016/j.cma.2022.114616

    Article  ADS  MathSciNet  Google Scholar 

  28. Abualigah, L., Yousri, D., Abd Elaziz, M., Ewees, A.A., Al-qaness, M.A.A., Gandomi, A.H.: Aquila optimizer: a novel meta-heuristic optimization algorithm. Comput. Ind. Eng. 157, 107250 (2021). https://doi.org/10.1016/j.cie.2021.107250

    Article  Google Scholar 

  29. Pan, J.-S., Zhang, L.-G., Wang, R.-B., Snášel, V., Chu, S.-C.: Gannet optimization algorithm: a new metaheuristic algorithm for solving engineering optimization problems. Math. Comput. Simul 202, 343–373 (2022). https://doi.org/10.1016/j.matcom.2022.06.007

    Article  MathSciNet  Google Scholar 

  30. Pan, Q., Tang, J., Zhan, J., Li, H.: Bacteria phototaxis optimizer. Neural Comput. Appl. 35, 1–32 (2023). https://doi.org/10.1007/s00521-023-08391-6

    Article  Google Scholar 

  31. Zhao, S., Zhang, T., Ma, S., Wang, M.: Sea-horse optimizer: a novel naturE−inspired meta-heuristic for global optimization problems. Appl. Intell. 53(10), 11833–11860 (2023). https://doi.org/10.1007/s10489-022-03994-3

    Article  Google Scholar 

  32. Dehghani, M., Montazeri, Z., Trojovská, E., Trojovský, P.: Coati Optimization Algorithm: a new bio-inspired metaheuristic algorithm for solving optimization problems. Knowl.-Based Syst. 259, 110011 (2023). https://doi.org/10.1016/j.knosys.2022.110011

    Article  Google Scholar 

  33. Agushaka, J.O., Ezugwu, A.E., Abualigah, L.: Dwarf mongoose optimization algorithm. Comput. Methods Appl. Mech. Eng. 391, 114570 (2022). https://doi.org/10.1016/j.cma.2022.114570

    Article  ADS  MathSciNet  Google Scholar 

  34. Hashim, F.A., Hussien, A.G.: Snake optimizer: a novel meta-heuristic optimization algorithm. KnowledgE−Based Syst. 242, 108320 (2022). https://doi.org/10.1016/j.knosys.2022.108320

    Article  Google Scholar 

  35. Abualigah, L., Elaziz, M.A., Sumari, P., Geem, Z.W., Gandomi, A.H.: Reptile search algorithm (RSA): a naturE−inspired meta-heuristic optimizer. Expert Syst. Appl. 191, 116158 (2022). https://doi.org/10.1016/j.eswa.2021.116158

    Article  Google Scholar 

  36. Ezugwu, A.E., Agushaka, J.O., Abualigah, L., Mirjalili, S., Gandomi, A.H.: Prairie dog optimization algorithm. Neural Comput. Appl. 34(22), 20017–20065 (2022). https://doi.org/10.1007/s00521-022-07530-9

    Article  Google Scholar 

  37. Oyelade, O.N., Ezugwu, A.E.−S., Mohamed, T.I.A., Abualigah, L.: Ebola optimization search algorithm: a new naturE−inspired metaheuristic optimization algorithm. IEEE Access 10, 16150–16177 (2022). https://doi.org/10.1109/ACCESS.2022.3147821

    Article  Google Scholar 

  38. Holland, J.H.: Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. MIT press, Cambridge (1992)

    Book  Google Scholar 

  39. Storn, R., Price, K.: Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997). https://doi.org/10.1023/A:1008202821328

    Article  MathSciNet  Google Scholar 

  40. Simon, D.: Biogeography-based optimization. IEEE Trans. Evol. Comput. 12(6), 702–713 (2008). https://doi.org/10.1109/TEVC.2008.919004

    Article  Google Scholar 

  41. Wierstra, D., Schaul, T., Peters, J., Schmidhuber, J.: Natural Evolution Strategies, In: 2008 IEEE Congress on evolutionary computation (ieee world congress on computational intelligence), pp. 3381–3387. (2008) https://doi.org/10.1109/CEC.2008.4631255

  42. Zhong, J., Feng, L., Ong, Y.: Gene expression programming: a survey [Review Article]. IEEE Comput. Intell. Mag. 12, 54–72 (2017). https://doi.org/10.1109/MCI.2017.2708618

    Article  Google Scholar 

  43. Eusuff, M., Lansey, K., Pasha, F.: Shuffled frog-leaping algorithm: a memetic meta-heuristic for discrete optimization. Eng. Optim. 38(2), 129–154 (2006). https://doi.org/10.1080/03052150500384759

    Article  MathSciNet  Google Scholar 

  44. Barkat Ullah, A. S. S. M., Sarker, R., Comfort, D., Lokan, C.: An agent-based memetic algorithm (AMA) for solving constrained optimazation problems, In: 2007 IEEE congress on evolutionary computation, pp. 999–1006, (2007) doi https://doi.org/10.1109/CEC.2007.4424579

  45. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983). https://doi.org/10.1126/science.220.4598.671

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  46. Rashedi, E., Nezamabadi-pour, H., Saryazdi, S.: GSA: a gravitational search algorithm. Inf. Sci. (Ny) 179(13), 2232–2248 (2009). https://doi.org/10.1016/j.ins.2009.03.004

    Article  Google Scholar 

  47. Erol, O.K., Eksin, I.: A new optimization method: Big Bang-Big Crunch. Adv. Eng. Softw. 37(2), 106–111 (2006). https://doi.org/10.1016/j.advengsoft.2005.04.005

    Article  Google Scholar 

  48. Kaveh, A.: Charged system search algorithm. In: Advances in metaheuristic algorithms for optimal design of structures, pp. 45–89. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-46173-1_3

    Chapter  Google Scholar 

  49. Zhao, W., Zhang, Z., Wang, L.: Manta ray foraging optimization: an effective bio-inspired optimizer for engineering applications. Eng. Appl. Artif. Intell. 87, 103300 (2020). https://doi.org/10.1016/j.engappai.2019.103300

    Article  Google Scholar 

  50. Salimi, H.: Stochastic fractal search: a powerful metaheuristic algorithm. KnowledgE−Based Syst. 75, 1–18 (2015). https://doi.org/10.1016/j.knosys.2014.07.025

    Article  Google Scholar 

  51. Faramarzi, A., Heidarinejad, M., Stephens, B., Mirjalili, S.: Equilibrium optimizer: a novel optimization algorithm. KnowledgE−Based Syst. 191, 105190 (2020). https://doi.org/10.1016/j.knosys.2019.105190

    Article  Google Scholar 

  52. Mirjalili, S.: SCA: a sine cosine algorithm for solving optimization problems. KnowledgE−Based Syst. 96, 120–133 (2016). https://doi.org/10.1016/j.knosys.2015.12.022

    Article  Google Scholar 

  53. Eskandar, H., Sadollah, A., Bahreininejad, A., Hamdi, M.: Water cycle algorithm – a novel metaheuristic optimization method for solving constrained engineering optimization problems. Comput. Struct. 110–111, 151–166 (2012). https://doi.org/10.1016/j.compstruc.2012.07.010

    Article  Google Scholar 

  54. Kaveh, A.: Thermal exchange metaheuristic optimization algorithm, pp. 733–782. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-59392-6_23

    Book  Google Scholar 

  55. Hashim, F.A., Hussain, K., Houssein, E.H., Mabrouk, M.S., Al-Atabany, W.: Archimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problems. Appl. Intell. 51(3), 1531–1551 (2021). https://doi.org/10.1007/s10489-020-01893-z

    Article  Google Scholar 

  56. Abdel-Basset, M., Mohamed, R., Azeem, S.A.A., Jameel, M., Abouhawwash, M.: Kepler optimization algorithm: a new metaheuristic algorithm inspired by Kepler’s laws of planetary motion. KnowledgE−Based Syst. 268, 110454 (2023). https://doi.org/10.1016/j.knosys.2023.110454

    Article  Google Scholar 

  57. Hashim, F.A., Mostafa, R.R., Hussien, A.G., Mirjalili, S., Sallam, K.M.: Fick’s Law Algorithm: a physical law-based algorithm for numerical optimization. KnowledgE−Based Syst. 260, 110146 (2023). https://doi.org/10.1016/j.knosys.2022.110146

    Article  Google Scholar 

  58. Qais, M.H., Hasanien, H.M., Alghuwainem, S., Loo, K.H.: Propagation search algorithm: a physics-based optimizer for engineering applications. Mathematics (2023). https://doi.org/10.3390/math11204224

    Article  Google Scholar 

  59. Ahmadianfar, I., Heidari, A.A., Noshadian, S., Chen, H., Gandomi, A.H.: INFO: an efficient optimization algorithm based on weighted mean of vectors. Expert Syst. Appl. 195, 116516 (2022). https://doi.org/10.1016/j.eswa.2022.116516

    Article  Google Scholar 

  60. Shi, Y.: Brain storm optimization algorithm. In: Advances in Swarm intelligence, pp. 303–309. Springer, Berlin (2011)

    Chapter  Google Scholar 

  61. Rao, R.V., Savsani, V.J., Vakharia, D.P.: Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput. Des. 43(3), 303–315 (2011). https://doi.org/10.1016/j.cad.2010.12.015

    Article  Google Scholar 

  62. Wang, F.-S., Chen, L.-H.: Tabu search. In: Dubitzky, W., Wolkenhauer, O., Cho, K.-H., Yokota, H. (eds.) Encyclopedia of systems biology, p. 2120. Springer, New York (2013). https://doi.org/10.1007/978-1-4419-9863-7_413

    Chapter  Google Scholar 

  63. Kim, J.H.: Harmony search algorithm: a unique music-inspired algorithm. Procedia Eng. 154, 1401–1405 (2016). https://doi.org/10.1016/j.proeng.2016.07.510

    Article  Google Scholar 

  64. Askari, Q., Younas, I., Saeed, M.: Political optimizer: a novel socio-inspired meta-heuristic for global optimization. KnowledgE−Based Syst. 195, 105709 (2020). https://doi.org/10.1016/j.knosys.2020.105709

    Article  Google Scholar 

  65. Atashpaz-Gargari, E., Lucas, C.: Imperialist competitive algorithm: An algorithm for optimization inspired by imperialistic competition, In: 2007 IEEE congress on evolutionary computation, pp. 4661–4667. (2007) doi: https://doi.org/10.1109/CEC.2007.4425083

  66. Husseinzadeh Kashan, A.: League championship algorithm (LCA): an algorithm for global optimization inspired by sport championships. Appl. Soft Comput. 16, 171–200 (2014). https://doi.org/10.1016/j.asoc.2013.12.005

    Article  Google Scholar 

  67. Jahangiri, M., Hadianfard, M.A., Najafgholipour, M.A., Jahangiri, M., Gerami, M.R.: Interactive autodidactic school: a new metaheuristic optimization algorithm for solving mathematical and structural design optimization problems. Comput. Struct. 235, 106268 (2020). https://doi.org/10.1016/j.compstruc.2020.106268

    Article  Google Scholar 

  68. Abualigah, L., Diabat, A., Mirjalili, S., Abd Elaziz, M., Gandomi, A.H.: The arithmetic optimization algorithm. Comput. Methods Appl. Mech. Eng 376, 113609 (2021). https://doi.org/10.1016/j.cma.2020.113609

    Article  ADS  MathSciNet  Google Scholar 

  69. Dehghani, P., Milková, E.: Language education optimization: a new human-basedmetaheuristic algorithm for solving optimization problems. Comput. Model. Eng. Sci. 136, 1–47 (2023). https://doi.org/10.32604/cmes.2023.025908

    Article  Google Scholar 

  70. Givi, H., Hubálovská, M.: Skill optimization algorithm: a new human-based metaheuristic technique. Comput. Mater. Contin. 74, 179–202 (2023). https://doi.org/10.32604/cmc.2023.030379

    Article  Google Scholar 

  71. Rahman, C.M.: Group learning algorithm: a new metaheuristic algorithm. Neural Comput. Appl. 35(19), 14013–14028 (2023). https://doi.org/10.1007/s00521-023-08465-5

    Article  Google Scholar 

  72. Zhang, Q., Gao, H., Zhan, Z.-H., Li, J., Zhang, H.: Growth optimizer: a powerful metaheuristic algorithm for solving continuous and discrete global optimization problems. KnowledgE−Based Syst. 261, 110206 (2023). https://doi.org/10.1016/j.knosys.2022.110206

    Article  Google Scholar 

  73. Fakhouri, H., Hamad, F., Alawamrah, A.: Success history intelligent optimizer. J. Supercomput. (2022). https://doi.org/10.1007/s11227-021-04093-9

    Article  Google Scholar 

  74. Abdulhameed, S., Rashid, T.A.: Child drawing development optimization algorithm based on child’s cognitive development. Arab. J. Sci. Eng. 47(2), 1337–1351 (2022). https://doi.org/10.1007/s13369-021-05928-6

    Article  Google Scholar 

  75. Zamani, H., Nadimi-Shahraki, M.H., Gandomi, A.H.: CCSA: conscious neighborhood-based crow search algorithm for solving global optimization problems. Appl. Soft Comput. 85, 105583 (2019). https://doi.org/10.1016/j.asoc.2019.105583

    Article  Google Scholar 

  76. Zamani, H., Nadimi-Shahraki, M.H., Gandomi, A.H.: QANA: quantum-based avian navigation optimizer algorithm. Eng. Appl. Artif. Intell. 104, 104314 (2021). https://doi.org/10.1016/j.engappai.2021.104314

    Article  Google Scholar 

  77. Nadimi-Shahraki, M.H., Zamani, H., Mirjalili, S.: Enhanced whale optimization algorithm for medical feature selection: a COVID-19 case study. Comput. Biol. Med. 148, 105858 (2022). https://doi.org/10.1016/j.compbiomed.2022.105858

    Article  CAS  PubMed  Google Scholar 

  78. Fatahi, A., Nadimi-Shahraki, M.H., Zamani, H.: An improved binary quantum-based avian navigation optimizer algorithm to select effective feature subset from medical data: a COVID-19 case study. J. Bionic Eng. (2023). https://doi.org/10.1007/s42235-023-00433-y

    Article  Google Scholar 

  79. Nadimi-Shahraki, M.H., Fatahi, A., Zamani, H., Mirjalili, S.: Binary approaches of quantum-based avian navigation optimizer to select effective features from high-dimensional medical data. Mathematics (2022). https://doi.org/10.3390/math10152770

    Article  Google Scholar 

  80. Nadimi-Shahraki, M.H., Asghari Varzaneh, Z., Zamani, H., Mirjalili, S.: Binary starling murmuration optimizer algorithm to select effective features from medical data. Appl. Sci. (2023). https://doi.org/10.3390/app13010564

    Article  Google Scholar 

  81. Barua, S., Merabet, A.: Lévy arithmetic algorithm: an enhanced metaheuristic algorithm and its application to engineering optimization. Expert Syst. Appl. 241, 122335 (2024). https://doi.org/10.1016/j.eswa.2023.122335

    Article  Google Scholar 

  82. Nama, S., Saha, A.K., Chakraborty, S., Gandomi, A.H., Abualigah, L.: Boosting particle swarm optimization by backtracking search algorithm for optimization problems. Swarm Evol. Comput. 79, 101304 (2023). https://doi.org/10.1016/j.swevo.2023.101304

    Article  Google Scholar 

  83. Chakraborty, P., Nama, S., Saha, A.K.: A hybrid slime mould algorithm for global optimization. Multimed. Tools Appl. 82(15), 22441–22467 (2023). https://doi.org/10.1007/s11042-022-14077-3

    Article  Google Scholar 

  84. Sharma, S., Saha, A.K., Roy, S., Mirjalili, S., Nama, S.: A mixed sine cosine butterfly optimization algorithm for global optimization and its application. Cluster Comput. 25(6), 4573–4600 (2022). https://doi.org/10.1007/s10586-022-03649-5

    Article  Google Scholar 

  85. Nama, S., Saha, A.K., Sharma, S.: Performance up-gradation of symbiotic organisms search by backtracking search algorithm. J. Ambient. Intell. Humaniz. Comput. 13(12), 5505–5546 (2022). https://doi.org/10.1007/s12652-021-03183-z

    Article  PubMed  Google Scholar 

  86. Chakraborty, S., Nama, S., Saha, A.K.: An improved symbiotic organisms search algorithm for higher dimensional optimization problems. KnowledgE−Based Syst. 236, 107779 (2022). https://doi.org/10.1016/j.knosys.2021.107779

    Article  Google Scholar 

  87. Nama, S., Saha, A.K.: A bio-inspired multi-population-based adaptive backtracking search algorithm. Cognit. Comput. 14(2), 900–925 (2022). https://doi.org/10.1007/s12559-021-09984-w

    Article  PubMed  PubMed Central  Google Scholar 

  88. Nama, S.: A modification of I-SOS: performance analysis to large scale functions. Appl. Intell. 51(11), 7881–7902 (2021). https://doi.org/10.1007/s10489-020-01974-z

    Article  Google Scholar 

  89. Nama, S., Saha, A.K.: A new parameter setting-based modified differential evolution for function optimization. Int. J. Model. Simulation Sci. Comput. 11(4), 2050029 (2020). https://doi.org/10.1142/S1793962320500294

    Article  Google Scholar 

  90. Nama, S.: A novel improved SMA with quasi reflection operator: Performance analysis, application to the image segmentation problem of Covid-19 chest X-ray images. Appl. Soft Comput. 118, 108483 (2022). https://doi.org/10.1016/j.asoc.2022.108483

    Article  Google Scholar 

  91. Nama, S., Sharma, S., Saha, A.K., Gandomi, A.H.: A quantum mutation-based backtracking search algorithm. Artif. Intell. Rev. 55(4), 3019–3073 (2022). https://doi.org/10.1007/s10462-021-10078-0

    Article  Google Scholar 

  92. Sharma, S., Chakraborty, S., Saha, A.K., Nama, S., Sahoo, S.K.: mLBOA: a modified butterfly optimization algorithm with lagrange interpolation for global optimization. J. Bionic Eng. 19(4), 1161–1176 (2022). https://doi.org/10.1007/s42235-022-00175-3

    Article  Google Scholar 

  93. Sahoo, S.K., Saha, A.K., Nama, S., Masdari, M.: An improved moth flame optimization algorithm based on modified dynamic opposite learning strategy. Artif. Intell. Rev. 56(4), 2811–2869 (2023). https://doi.org/10.1007/s10462-022-10218-0

    Article  Google Scholar 

  94. Abdel-Basset, M., Mohamed, R., Jameel, M., Abouhawwash, M.: Nutcracker optimizer: a novel naturE−inspired metaheuristic algorithm for global optimization and engineering design problems. KnowledgE−Based Syst. 262, 110248 (2023). https://doi.org/10.1016/j.knosys.2022.110248

    Article  Google Scholar 

  95. Deng, L., Liu, S.: Snow ablation optimizer: a novel metaheuristic technique for numerical optimization and engineering design. Expert Syst. Appl. 225, 120069 (2023). https://doi.org/10.1016/j.eswa.2023.120069

    Article  Google Scholar 

  96. Han, M., Du, Z., Yuen, K.F., Zhu, H., Li, Y., Yuan, Q.: Walrus optimizer: a novel naturE−inspired metaheuristic algorithm. Expert Syst. Appl. 239, 122413 (2024). https://doi.org/10.1016/j.eswa.2023.122413

    Article  Google Scholar 

  97. ALRahhal, H., Jamous, R.: AFOX: a new adaptive naturE−inspired optimization algorithm. Artif. Intell. Rev. 56(12), 15523–15566 (2023). https://doi.org/10.1007/s10462-023-10542-z

    Article  Google Scholar 

  98. Xue, J., Shen, B.: Dung beetle optimizer: a new meta-heuristic algorithm for global optimization. J. Supercomput. 79(7), 7305–7336 (2023). https://doi.org/10.1007/s11227-022-04959-6

    Article  Google Scholar 

  99. Ghaedi, A., Bardsiri, A.K., Shahbazzadeh, M.J.: Cat hunting optimization algorithm: a novel optimization algorithm. Evol. Intell. 16(2), 417–438 (2023). https://doi.org/10.1007/s12065-021-00668-w

    Article  Google Scholar 

  100. Braik, M., Hammouri, A., Atwan, J., Al-Betar, M.A., Awadallah, M.A.: White Shark Optimizer: a novel bio-inspired meta-heuristic algorithm for global optimization problems. KnowledgE−Based Syst. 243, 108457 (2022). https://doi.org/10.1016/j.knosys.2022.108457

    Article  Google Scholar 

  101. Hashim, F.A., Houssein, E.H., Hussain, K., Mabrouk, M.S., Al-Atabany, W.: Honey Badger Algorithm: new metaheuristic algorithm for solving optimization problems. Math. Comput. Simul 192, 84–110 (2022). https://doi.org/10.1016/j.matcom.2021.08.013

    Article  MathSciNet  Google Scholar 

  102. Zhong, C., Li, G., Meng, Z.: Beluga whale optimization: a novel naturE−inspired metaheuristic algorithm. KnowledgE−Based Syst. 251, 109215 (2022). https://doi.org/10.1016/j.knosys.2022.109215

    Article  Google Scholar 

  103. Yang, X.-S.: Flower pollination algorithm for global optimization,” In: Unconventional Computation and Natural Computation, pp. 240–249 (2012).

  104. Fister, jr I., Fister, I., Yang, X.-S., Fong, S., Zhuang, Y.: Bat algorithm: recent advances, In: CINTI 2014 - 15th IEEE International Symposium Computer Intelligences Informatics, Proceedings, pp. 163–167, (2014) doi: https://doi.org/10.1109/CINTI.2014.7028669

  105. Johari, N., Zain, A., Mustaffa, N., Udin, A.: Firefly algorithm for optimization problem. Appl. Mech. Mater. (2013). https://doi.org/10.4028/www.scientific.net/AMM.421.512

    Article  Google Scholar 

  106. Yang, X.-S., Deb, S.: Cuckoo search via Lévy flights. In: 2009 World congress on nature & biologically inspired computing (NaBIC), 2009, pp. 210–214.

  107. Mirjalili, S.: Moth-flame optimization algorithm: a novel naturE−inspired heuristic paradigm. KnowledgE−Based Syst. 89, 228–249 (2015). https://doi.org/10.1016/j.knosys.2015.07.006

    Article  Google Scholar 

  108. Kiran, M.S.: TSA: treE−seed algorithm for continuous optimization. Expert Syst. Appl. 42(19), 6686–6698 (2015). https://doi.org/10.1016/j.eswa.2015.04.055

    Article  Google Scholar 

  109. Hussain, K., Salleh, M.N.M., Cheng, S., Shi, Y.: On the exploration and exploitation in popular swarm-based metaheuristic algorithms. Neural Comput. Appl. 31(11), 7665–7683 (2019). https://doi.org/10.1007/s00521-018-3592-0

    Article  Google Scholar 

  110. Mishra, P., Singh, U., Pandey, C.M., Mishra, P., Pandey, G.: Application of student’s t-test, analysis of variance, and covariance. Ann. Card. Anaesth. 22(4), 407–411 (2019). https://doi.org/10.4103/aca.ACA_94_19

    Article  PubMed  PubMed Central  Google Scholar 

  111. Jussila, J.J.: Using Friedman test for creating comparable group results of nonparametric innovation competence data using Friedman test for creating comparable group results of nonparametric innovation competence Data 2 specific features of nonnumeric and nonparametric, No. December 2008 (2014)

  112. Gholizadeh, S., Danesh, M., Gheyratmand, C.: A new Newton metaheuristic algorithm for discrete performancE−based design optimization of steel moment frames. Comput. Struct. 234, 106250 (2020). https://doi.org/10.1016/j.compstruc.2020.106250

    Article  Google Scholar 

  113. Moazzeni, A.R., Khamehchi, E.: Rain optimization algorithm (ROA): A new metaheuristic method for drilling optimization solutions. J. Pet. Sci. Eng. 195, 107512 (2020). https://doi.org/10.1016/j.petrol.2020.107512

    Article  CAS  Google Scholar 

  114. Askari, Q., Saeed, M., Younas, I.: Heap-based optimizer inspired by corporate rank hierarchy for global optimization. Expert Syst. Appl. 161, 113702 (2020). https://doi.org/10.1016/j.eswa.2020.113702

    Article  Google Scholar 

  115. Liu, Y., Li, R.: PSA: a photon search algorithm. J. Inf. Process. Syst. 16(2), 478–493 (2020)

    Google Scholar 

  116. Qais, M.H., Hasanien, H.M., Alghuwainem, S.: Transient search optimization: a new meta-heuristic optimization algorithm. Appl. Intell. 50(11), 3926–3941 (2020). https://doi.org/10.1007/s10489-020-01727-y

    Article  Google Scholar 

  117. Anita, Yadav, A.: AEFA: artificial electric field algorithm for global optimization. Swarm Evol. Comput 48, 93–108 (2019). https://doi.org/10.1016/j.swevo.2019.03.013

    Article  Google Scholar 

  118. Hosseini, E., Sadiq, A.S., Ghafoor, K.Z., Rawat, D.B., Saif, M., Yang, X.: Volcano eruption algorithm for solving optimization problems. Neural Comput. Appl. 33(7), 2321–2337 (2021). https://doi.org/10.1007/s00521-020-05124-x

    Article  Google Scholar 

  119. Zhang, Y., Jin, Z.: Group teaching optimization algorithm: a novel metaheuristic method for solving global optimization problems. Expert Syst. Appl. 148, 113246 (2020). https://doi.org/10.1016/j.eswa.2020.113246

    Article  Google Scholar 

  120. Sharma, R., Pachauri, A.: A review of pressure vessels regarding their design, manufacturing, testing, materials, and inspection. Mater. Today Proc. (2023). https://doi.org/10.1016/j.matpr.2023.03.258

    Article  PubMed  Google Scholar 

  121. Erdoğan Yildirim, A., Karci, A.: Application of three bar truss problem among engineering design optimization problems using artificial atom algorithm, pp. 1–5 (2018) doi https://doi.org/10.1109/IDAP.2018.8620762.

  122. Celik, Y., Kutucu, H.: Solving the tension/compression spring design problem by an improved firefly algorithm. In: IDDM, (2018)

  123. Lin, M.-H., Tsai, J.-F., Hu, N.-Z., Chang, S.-C.: Design optimization of a speed reducer using deterministic techniques. Math. Probl. Eng. 2013, 1–7 (2013). https://doi.org/10.1155/2013/419043

    Article  Google Scholar 

  124. Krishnamoorthy, D., Fjalestad, K., Skogestad, S.: Optimal operation of oil and gas production using simple feedback control structures. Control. Eng. Pract. 91, 104107 (2019). https://doi.org/10.1016/j.conengprac.2019.104107

    Article  Google Scholar 

  125. Babu, A.H., Naresh, P., Madhava, V., Reddy, M.S.: Minimum weight optimization of a gear train by using GA. IJETAS 1, 43–50 (2016)

    Google Scholar 

  126. Bogere, P., Akol, R., Butime, J.: Optimization of frequency modulation band for terrestrial radio broadcasting: the Case of Uganda, (2015) doi: https://doi.org/10.1109/COMCAS.2015.7360389.

  127. Eberhart, Shi, Y.: Particle swarm optimization: development, applications and resources, In: Proceedings of the IEEE conference on evolutionary computation, ICEC, September, vol. 1, pp. 81–86 (2001) doi: https://doi.org/10.1109/CEC.2001.934374.

  128. Mirjalili, S., Mirjalili, S., Hatamlou, A.: Multi-verse optimizer: a nature-inspired algorithm for global optimization. Neural Comput. Appl. (2015). https://doi.org/10.1007/s00521-015-1870-7

    Article  Google Scholar 

Download references

Acknowledgements

The first author wishes to express his gratitude to Doon University in Uttarakhand, India, for providing all of the essential resources for this study.

Author information

Authors and Affiliations

Authors

Contributions

Shivankur Thapliyal, and Narender Kumar wrote the main manuscript text . All authors reviewed the manuscript

Corresponding author

Correspondence to Narender Kumar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Tables 

Table 40 Benchmark functions for optimization

40,

Table 41 Forty-two extra functions based on various modalities

41,

Table 42 IEEE CEC-2015 benchmark test functions

42,

Table 43 IEEE CEC-2017 benchmark test functions

43,

Table 44 Abbreviations

44.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thapliyal, S., Kumar, N. Hyperbolic Sine Optimizer: a new metaheuristic algorithm for high performance computing to address computationally intensive tasks. Cluster Comput (2024). https://doi.org/10.1007/s10586-024-04328-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10586-024-04328-3

Keywords

Navigation