Skip to content
Licensed Unlicensed Requires Authentication Published online by De Gruyter March 8, 2024

The role of long noncoding RNAs in amyotrophic lateral sclerosis

  • Darya Rajabi ORCID logo , Shaghayegh Khanmohammadi and Nima Rezaei EMAIL logo

Abstract

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease with a poor prognosis leading to death. The diagnosis and treatment of ALS are inherently challenging due to its complex pathomechanism. Long noncoding RNAs (lncRNAs) are transcripts longer than 200 nucleotides involved in different cellular processes, incisively gene expression. In recent years, more studies have been conducted on lncRNA classes and interference in different disease pathologies, showing their promising contribution to diagnosing and treating neurodegenerative diseases. In this review, we discussed the role of lncRNAs like NEAT1 and C9orf72-as in ALS pathogenesis mechanisms caused by mutations in different genes, including TAR DNA-binding protein-43 (TDP-43), fused in sarcoma (FUS), superoxide dismutase type 1 (SOD1). NEAT1 is a well-established lncRNA in ALS pathogenesis; hence, we elaborate on its involvement in forming paraspeckles, stress response, inflammatory response, and apoptosis. Furthermore, antisense lncRNAs (as-lncRNAs), a key group of transcripts from the opposite strand of genes, including ZEB1-AS1 and ATXN2-AS, are discussed as newly identified components in the pathology of ALS. Ultimately, we review the current standing of using lncRNAs as biomarkers and therapeutic agents and the future vision of further studies on lncRNA applications.


Corresponding author: Nima Rezaei, Research Center for Immunodeficiencies, Children’s Medical Center, No 63, Gharib Ave, Keshavarz Blv, Tehran, 1419733151, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Children’s Medical Center, No 63, Gharib Ave, Keshavarz Blv, Tehran, 1419733151, Iran; and Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Felestin St., Keshavarz Blvd., Tehran, 1416634793, Iran, E-mail:

  1. Research ethics: Not applicable.

  2. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission. DR: conceptualization – data gathering – writing primary draft – editing. SK: project administration – writing – editing. NR: conceptualization, editing.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: None declared.

  5. Data availability: Not applicable.

References

Abdulle, L.E., Hao, J.L., Pant, O.P., Liu, X.F., Zhou, D.D., Gao, Y., Suwal, A., and Lu, C.W. (2019). MALAT1 as a diagnostic and therapeutic target in diabetes-related complications: a promising long-noncoding RNA. Int. J. Med. Sci. 16: 548–555, https://doi.org/10.7150/ijms.30097.Search in Google Scholar PubMed PubMed Central

Adriaens, C., Standaert, L., Barra, J., Latil, M., Verfaillie, A., Kalev, P., Boeckx, B., Wijnhoven, P.W., Radaelli, E., Vermi, W., et al.. (2016). p53 induces formation of NEAT1 lncRNA-containing paraspeckles that modulate replication stress response and chemosensitivity. Nat. Med. 22: 861–868, https://doi.org/10.1038/nm.4135.Search in Google Scholar PubMed

Ahmad, P., Bensaoud, C., Mekki, I., Rehman, M.U., and Kotsyfakis, M. (2021). Long non-coding RNAs and their potential roles in the vector-host-pathogen triad. Life 11: 1–12.10.3390/life11010056Search in Google Scholar PubMed PubMed Central

An, H., Skelt, L., Notaro, A., Highley, J.R., Fox, A.H., La Bella, V., Buchman, V.L., and Shelkovnikova, T.A. (2019). ALS-linked FUS mutations confer loss and gain of function in the nucleus by promoting excessive formation of dysfunctional paraspeckles. Acta Neuropathol. Commun. 7: 7, https://doi.org/10.1186/s40478-019-0658-x.Search in Google Scholar PubMed PubMed Central

An, Q., Zhou, Z., Xie, Y., Sun, Y., Zhang, H., and Cao, Y. (2021). Knockdown of long non-coding RNA NEAT1 relieves the inflammatory response of spinal cord injury through targeting miR-211-5p/MAPK1 axis. Bioengineered 12: 2702–2712, https://doi.org/10.1080/21655979.2021.1930925.Search in Google Scholar PubMed PubMed Central

Arthur, K.C., Calvo, A., Price, T.R., Geiger, J.T., Chiò, A., and Traynor, B.J. (2016). Projected increase in amyotrophic lateral sclerosis from 2015 to 2040. Nat. Commun. 7: 12408, https://doi.org/10.1038/ncomms12408.Search in Google Scholar PubMed PubMed Central

Arun, G., Aggarwal, D., and Spector, D.L. (2020). MALAT1 long non-coding RNA: functional implications. Noncoding RNA 6: 22.10.3390/ncrna6020022Search in Google Scholar PubMed PubMed Central

Aschenbrenner, D.S. (2023). New drug approved for ALS. Am. J. Nurs. 123: 22–23, https://doi.org/10.1097/01.naj.0000911516.31267.67.Search in Google Scholar

Asim, M.N., Ibrahim, M.A., Imran Malik, M., Dengel, A., and Ahmed, S. (2021). Advances in computational methodologies for classification and sub-cellular locality prediction of non-coding RNAs. Int. J. Mol. Sci. 22: 8719, https://doi.org/10.3390/ijms22168719.Search in Google Scholar PubMed PubMed Central

Barbo, M. and Ravnik-Glavač, M. (2023). Extracellular vesicles as potential biomarkers in amyotrophic lateral sclerosis. Genes 14: 325.10.3390/genes14020325Search in Google Scholar PubMed PubMed Central

Birsa, N., Bentham, M.P., and Fratta, P. (2020). Cytoplasmic functions of TDP-43 and FUS and their role in ALS. Semin. Cell Dev. Biol. 99: 193–201, https://doi.org/10.1016/j.semcdb.2019.05.023.Search in Google Scholar PubMed

Bridges, M.C., Daulagala, A.C., and Kourtidis, A. (2021). LNCcation: lncRNA localization and function. J. Cell Biol. 220: e202009045, https://doi.org/10.1083/jcb.202009045.Search in Google Scholar PubMed PubMed Central

Brown, R.H. and Al-Chalabi, A. (2017). Amyotrophic lateral sclerosis. N. Engl. J. Med. 377: 162–172, https://doi.org/10.1056/nejmra1603471.Search in Google Scholar PubMed

Buonaiuto, G., Desideri, F., Taliani, V., and Ballarino, M. (2021). Muscle regeneration and RNA: new perspectives for ancient molecules. Cells 10: 2512, https://doi.org/10.3390/cells10102512.Search in Google Scholar PubMed PubMed Central

Cai, J., Wang, T., Deng, X., Tang, L., and Liu, L. (2023). GM-lncLoc: LncRNAs subcellular localization prediction based on graph neural network with meta-learning. BMC Genomics 24: 52, https://doi.org/10.1186/s12864-022-09034-1.Search in Google Scholar PubMed PubMed Central

Cammack, A.J., Atassi, N., Hyman, T., van den Berg, L.H., Harms, M., Baloh, R.H., Brown, R.H., van Es, M.A., Veldink, J.H., de Vries, B.S., et al.. (2019). Prospective natural history study of C9orf72 ALS clinical characteristics and biomarkers. Neurology 93: e1605–e1617, https://doi.org/10.1212/wnl.0000000000008359.Search in Google Scholar PubMed PubMed Central

Chen, K., Zhu, X., Wang, J., Hao, L., Liu, Z., and Liu, Y. (2023). ncDENSE: a novel computational method based on a deep learning framework for non-coding RNAs family prediction. BMC Bioinform. 24: 68, https://doi.org/10.1186/s12859-023-05191-6.Search in Google Scholar PubMed PubMed Central

Chen, X. and Shang, H.F. (2015). New developments and future opportunities in biomarkers for amyotrophic lateral sclerosis. Transl. Neurodegener. 4: 17, https://doi.org/10.1186/s40035-015-0040-2.Search in Google Scholar PubMed PubMed Central

Chiò, A., Logroscino, G., Traynor, B.J., Collins, J., Simeone, J.C., Goldstein, L.A., and White, L.A. (2013). Global epidemiology of amyotrophic lateral sclerosis: a systematic review of the published literature. Neuroepidemiology 41: 118–130, https://doi.org/10.1159/000351153.Search in Google Scholar PubMed PubMed Central

Chujo, T., Yamazaki, T., and Hirose, T. (2016). Architectural RNAs (arcRNAs): a class of long noncoding RNAs that function as the scaffold of nuclear bodies. Biochim. Biophys. Acta 1859: 139–146, https://doi.org/10.1016/j.bbagrm.2015.05.007.Search in Google Scholar PubMed

Cook, C.N., Wu, Y., Odeh, H.M., Gendron, T.F., Jansen-West, K., Del Rosso, G., Yue, M., Jiang, P., Gomes, E., Tong, J., et al.. (2020). C9orf72 poly(GR) aggregation induces TDP-43 proteinopathy. Sci. Transl. Med. 12: eabb3774, https://doi.org/10.1126/scitranslmed.abb3774.Search in Google Scholar PubMed PubMed Central

Cooper-Knock, J., Higginbottom, A., Stopford, M.J., Highley, J.R., Ince, P.G., Wharton, S.B., Pickering-Brown, S., Kirby, J., Hautbergue, G.M., and Shaw, P.J. (2015). Antisense RNA foci in the motor neurons of C9ORF72-ALS patients are associated with TDP-43 proteinopathy. Acta Neuropathol. 130: 63–75, https://doi.org/10.1007/s00401-015-1429-9.Search in Google Scholar PubMed PubMed Central

Cornelis, G., Souquere, S., Vernochet, C., Heidmann, T., and Pierron, G. (2016). Functional conservation of the lncRNA NEAT1 in the ancestrally diverged marsupial lineage: evidence for NEAT1 expression and associated paraspeckle assembly during late gestation in the opossum Monodelphis domestica. RNA Biol. 13: 826–836, https://doi.org/10.1080/15476286.2016.1197482.Search in Google Scholar PubMed PubMed Central

Corona-Gomez, J.A., Coss-Navarrete, E.L., Garcia-Lopez, I.J., Klapproth, C., Pérez-Patiño, J.A., and Fernandez-Valverde, S.L. (2022). Transcriptome-guided annotation and functional classification of long non-coding RNAs in Arabidopsis thaliana. Sci. Rep. 12: 14063, https://doi.org/10.1038/s41598-022-18254-0.Search in Google Scholar PubMed PubMed Central

Dana, H., Chalbatani, G.M., Mahmoodzadeh, H., Karimloo, R., Rezaiean, O., Moradzadeh, A., Mehmandoost, N., Moazzen, F., Mazraeh, A., Marmari, V., et al.. (2017). Molecular mechanisms and biological functions of siRNA. Int. J. Biomed. Sci. 13: 48–57, https://doi.org/10.59566/ijbs.2017.13048.Search in Google Scholar

Deniz, E. and Erman, B. (2017). Long noncoding RNA (lincRNA), a new paradigm in gene expression control. Funct. Integr. Genomics 17: 135–143, https://doi.org/10.1007/s10142-016-0524-x.Search in Google Scholar PubMed

Denzler, R., Agarwal, V., Stefano, J., Bartel, D.P., and Stoffel, M. (2014). Assessing the ceRNA hypothesis with quantitative measurements of miRNA and target abundance. Mol. Cell 54: 766–776, https://doi.org/10.1016/j.molcel.2014.03.045.Search in Google Scholar PubMed PubMed Central

Derrien, T., Johnson, R., Bussotti, G., Tanzer, A., Djebali, S., Tilgner, H., Guernec, G., Martin, D., Merkel, A., Knowles, D.G., et al.. (2012). The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res. 22: 1775–1789, https://doi.org/10.1101/gr.132159.111.Search in Google Scholar PubMed PubMed Central

Dolinar, A., Koritnik, B., Glavač, D., and Ravnik-Glavač, M. (2019). Circular RNAs as potential blood biomarkers in amyotrophic lateral sclerosis. Mol. Neurobiol. 56: 8052–8062, https://doi.org/10.1007/s12035-019-1627-x.Search in Google Scholar PubMed PubMed Central

Elden, A.C., Kim, H.J., Hart, M.P., Chen-Plotkin, A.S., Johnson, B.S., Fang, X., Armakola, M., Geser, F., Greene, R., Lu, M.M., et al.. (2010). Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS. Nature 466: 1069–1075, https://doi.org/10.1038/nature09320.Search in Google Scholar PubMed PubMed Central

Farg, M.A., Soo, K.Y., Warraich, S.T., Sundaramoorthy, V., Blair, I.P., and Atkin, J.D. (2013). Ataxin-2 interacts with FUS and intermediate-length polyglutamine expansions enhance FUS-related pathology in amyotrophic lateral sclerosis. Hum. Mol. Genet. 22: 717–728, https://doi.org/10.1093/hmg/dds479.Search in Google Scholar PubMed

Fox, A.H. and Lamond, A.I. (2010). Paraspeckles. Cold Spring Harbor Perspect. Biol. 2: a000687, https://doi.org/10.1101/cshperspect.a000687.Search in Google Scholar PubMed PubMed Central

Gagliardi, S., Zucca, S., Pandini, C., Diamanti, L., Bordoni, M., Sproviero, D., Arigoni, M., Olivero, M., Pansarasa, O., Ceroni, M., et al.. (2018). Long non-coding and coding RNAs characterization in peripheral blood mononuclear cells and spinal cord from amyotrophic lateral sclerosis patients. Sci. Rep. 8: 2378, https://doi.org/10.1038/s41598-018-20679-5.Search in Google Scholar PubMed PubMed Central

Gao, N., Li, Y., Li, J., Gao, Z., Yang, Z., Li, Y., Liu, H., and Fan, T. (2020). Long non-coding RNAs: the regulatory mechanisms, research strategies, and future directions in cancers. Front. Oncol. 10: 598817, https://doi.org/10.3389/fonc.2020.598817.Search in Google Scholar PubMed PubMed Central

Gendron, T.F., Chew, J., Stankowski, J.N., Hayes, L.R., Zhang, Y.J., Prudencio, M., Carlomagno, Y., Daughrity, L.M., Jansen-West, K., Perkerson, E.A., et al.. (2017). Poly(GP) proteins are a useful pharmacodynamic marker for C9ORF72-associated amyotrophic lateral sclerosis. Sci. Transl. Med. 9: eaai7866, https://doi.org/10.1126/scitranslmed.aai7866.Search in Google Scholar PubMed PubMed Central

Ghafouri-Fard, S., Abak, A., Talebi, S.F., Shoorei, H., Branicki, W., Taheri, M., and Akbari Dilmaghani, N. (2021). Role of miRNA and lncRNAs in organ fibrosis and aging. Biomed. Pharmacother. 143: 112132, https://doi.org/10.1016/j.biopha.2021.112132.Search in Google Scholar PubMed

Ghafouri-Fard, S., Askari, A., Behzad Moghadam, K., Hussen, B.M., Taheri, M., and Samadian, M. (2023). A review on the role of ZEB1-AS1 in human disorders. Pathol. Res. Pract. 245: 154486, https://doi.org/10.1016/j.prp.2023.154486.Search in Google Scholar PubMed

Gil, N. and Ulitsky, I. (2020). Regulation of gene expression by cis-acting long non-coding RNAs. Nat. Rev. Genet. 21: 102–117, https://doi.org/10.1038/s41576-019-0184-5.Search in Google Scholar PubMed

Goyal, B., Yadav, S.R.M., Awasthee, N., Gupta, S., Kunnumakkara, A.B., and Gupta, S.C. (2021). Diagnostic, prognostic, and therapeutic significance of long non-coding RNA MALAT1 in cancer. Biochim. Biophys. Acta, Rev. Cancer 1875: 188502, https://doi.org/10.1016/j.bbcan.2021.188502.Search in Google Scholar PubMed

Grima, N., Liu, S., Southwood, D., Henden, L., Smith, A., Lee, A., Rowe, D.B., D’Silva, S., Blair, I.P., and Williams, K.L. (2023). RNA sequencing of peripheral blood in amyotrophic lateral sclerosis reveals distinct molecular subtypes: considerations for biomarker discovery. Neuropathol. Appl. Neurobiol. 49: e12943, https://doi.org/10.1111/nan.12943.Search in Google Scholar PubMed

Guru, S.C., Agarwal, S.K., Manickam, P., Olufemi, S.E., Crabtree, J.S., Weisemann, J.M., Kester, M.B., Kim, Y.S., Wang, Y., Emmert-Buck, M.R., et al.. (1997). A transcript map for the 2.8-Mb region containing the multiple endocrine neoplasia type 1 locus. Genome Res. 7: 725–735, https://doi.org/10.1101/gr.7.7.725.Search in Google Scholar PubMed PubMed Central

Han, Z. and Li, W. (2022). Enhancer RNA: what we know and what we can achieve. Cell Proliferation 55: e13202, https://doi.org/10.1111/cpr.13202.Search in Google Scholar PubMed PubMed Central

Hardiman, O., Al-Chalabi, A., Chio, A., Corr, E.M., Logroscino, G., Robberecht, W., Shaw, P.J., Simmons, Z., and van den Berg, L.H. (2017). Amyotrophic lateral sclerosis. Nat. Rev. Dis. Primers 3: 17071, https://doi.org/10.1038/nrdp.2017.71.Search in Google Scholar PubMed

Hewitt, C., Kirby, J., Highley, J.R., Hartley, J.A., Hibberd, R., Hollinger, H.C., Williams, T.L., Ince, P.G., McDermott, C.J., and Shaw, P.J. (2010). Novel FUS/TLS mutations and pathology in familial and sporadic amyotrophic lateral sclerosis. Arch. Neurol. 67: 455–461, https://doi.org/10.1001/archneurol.2010.52.Search in Google Scholar PubMed

Hirose, T., Yamazaki, T., and Nakagawa, S. (2019). Molecular anatomy of the architectural NEAT1 noncoding RNA: The domains, interactors, and biogenesis pathway required to build phase-separated nuclear paraspeckles. Wiley Interdiscip. Rev.: RNA 10: e1545.10.1002/wrna.1545Search in Google Scholar PubMed

Hombach, S. and Kretz, M. (2016). Non-coding RNAs: classification, biology and functioning. Adv. Exp. Med. Biol. 937: 3–17, https://doi.org/10.1007/978-3-319-42059-2_1.Search in Google Scholar PubMed

Huang, K., Wang, C., Vagts, C., Raguveer, V., Finn, P.W., and Perkins, D.L. (2022). Long non-coding RNAs (lncRNAs) NEAT1 and MALAT1 are differentially expressed in severe COVID-19 patients: an integrated single-cell analysis. PLoS One 17: e0261242, https://doi.org/10.1371/journal.pone.0261242.Search in Google Scholar PubMed PubMed Central

Ian, D., Anshul, K., Shelley, F.A., Patrick, J.C., Carrie, A.D., Francis, D., Charles, B.E., Seth, F., Jennifer, H., Rajinder, K., et al.. (2012). An integrated encyclopedia of DNA elements in the human genome. Nature 489: 57–74.10.1038/nature11247Search in Google Scholar PubMed PubMed Central

Idogawa, M., Ohashi, T., Sasaki, Y., Nakase, H., and Tokino, T. (2017). Long non-coding RNA NEAT1 is a transcriptional target of p53 and modulates p53-induced transactivation and tumor-suppressor function. Int. J. Cancer 140: 2785–2791, https://doi.org/10.1002/ijc.30689.Search in Google Scholar PubMed

Jolly, C. and Lakhotia, S.C. (2006). Human sat III and Drosophila hsr omega transcripts: a common paradigm for regulation of nuclear RNA processing in stressed cells. Nucleic Acids Res. 34: 5508–5514, https://doi.org/10.1093/nar/gkl711.Search in Google Scholar PubMed PubMed Central

Khanmohammadi, S. and Fallahtafti, P. (2023). Long non-coding RNA as a novel biomarker and therapeutic target in aggressive B-cell non-Hodgkin lymphoma: a systematic review. J. Cell. Mol. Med. 27: 1928–1946, https://doi.org/10.1111/jcmm.17795.Search in Google Scholar PubMed PubMed Central

Khorkova, O., Myers, A.J., Hsiao, J., and Wahlestedt, C. (2014). Natural antisense transcripts. Hum. Mol. Genet. 23: R54–R63, https://doi.org/10.1093/hmg/ddu207.Search in Google Scholar PubMed PubMed Central

Kopp, F. and Mendell, J.T. (2018). Functional classification and experimental dissection of long noncoding RNAs. Cell 172: 393–407, https://doi.org/10.1016/j.cell.2018.01.011.Search in Google Scholar PubMed PubMed Central

Krishnan, G., Raitcheva, D., Bartlett, D., Prudencio, M., McKenna-Yasek, D.M., Douthwright, C., Oskarsson, B.E., Ladha, S., King, O.D., Barmada, S.J., et al.. (2022). Poly(GR) and poly(GA) in cerebrospinal fluid as potential biomarkers for C9ORF72-ALS/FTD. Nat. Commun. 13: 2799, https://doi.org/10.1038/s41467-022-30387-4.Search in Google Scholar PubMed PubMed Central

Lagier-Tourenne, C., Baughn, M., Rigo, F., Sun, S., Liu, P., Li, H.R., Jiang, J., Watt, A.T., Chun, S., Katz, M., et al.. (2013). Targeted degradation of sense and antisense C9orf72 RNA foci as therapy for ALS and frontotemporal degeneration. Proc. Natl. Acad. Sci. U. S. A. 110: E4530–E4539, https://doi.org/10.1073/pnas.1318835110.Search in Google Scholar PubMed PubMed Central

Lagier-Tourenne, C., Polymenidou, M., Hutt, K.R., Vu, A.Q., Baughn, M., Huelga, S.C., Clutario, K.M., Ling, S.C., Liang, T.Y., Mazur, C., et al.. (2012). Divergent roles of ALS-linked proteins FUS/TLS and TDP-43 intersect in processing long pre-mRNAs. Nat. Neurosci. 15: 1488–1497, https://doi.org/10.1038/nn.3230.Search in Google Scholar PubMed PubMed Central

Laneve, P., Tollis, P., and Caffarelli, E. (2021). RNA deregulation in amyotrophic lateral sclerosis: the noncoding perspective. Int. J. Mol. Sci. 22: 10285, https://doi.org/10.3390/ijms221910285.Search in Google Scholar PubMed PubMed Central

Lee, P.W., Marshall, A.C., Knott, G.J., Kobelke, S., Martelotto, L., Cho, E., McMillan, P.J., Lee, M., Bond, C.S., and Fox, A.H. (2022). Paraspeckle subnuclear bodies depend on dynamic heterodimerization of DBHS RNA-binding proteins via their structured domains. J. Biol. Chem. 298: 102563, https://doi.org/10.1016/j.jbc.2022.102563.Search in Google Scholar PubMed PubMed Central

Li, J., Li, Z., Leng, K., Xu, Y., Ji, D., Huang, L., Cui, Y., and Jiang, X. (2018). ZEB1-AS1: a crucial cancer-related long non-coding RNA. Cell Prolif. 51: e12423, https://doi.org/10.1111/cpr.12423.Search in Google Scholar PubMed PubMed Central

Li, K. and Wang, Z. (2023). lncRNA NEAT1: key player in neurodegenerative diseases. Ageing Res. Rev. 86: 101878, https://doi.org/10.1016/j.arr.2023.101878.Search in Google Scholar PubMed

Li, P.P., Sun, X., Xia, G., Arbez, N., Paul, S., Zhu, S., Peng, H.B., Ross, C.A., Koeppen, A.H., Margolis, R.L., et al.. (2016). ATXN2-AS, a gene antisense to ATXN2, is associated with spinocerebellar ataxia type 2 and amyotrophic lateral sclerosis. Ann. Neurol. 80: 600–615, https://doi.org/10.1002/ana.24761.Search in Google Scholar PubMed PubMed Central

Li, R., Harvey, A.R., Hodgetts, S.I., and Fox, A.H. (2017). Functional dissection of NEAT1 using genome editing reveals substantial localization of the NEAT1-1 isoform outside paraspeckles. RNA 23: 872–881, https://doi.org/10.1261/rna.059477.116.Search in Google Scholar PubMed PubMed Central

Li, X., Wu, Z., Fu, X., and Han, W. (2014). lncRNAs: insights into their function and mechanics in underlying disorders. Mutat. Res., Rev. Mutat. Res. 762: 1–21, https://doi.org/10.1016/j.mrrev.2014.04.002.Search in Google Scholar PubMed

Liao, Y., Cai, H., Luo, F., Li, D., Li, H., Liao, G., Duan, J., Xu, R., and Zhang, X. (2023). Three nervous system-specific expressed genes are potential biomarkers for the diagnosis of sporadic amyotrophic lateral sclerosis through a bioinformatic analysis. BMC Med. Genomics 16: 15, https://doi.org/10.1186/s12920-023-01441-x.Search in Google Scholar PubMed PubMed Central

Liu, D., Zuo, X., Zhang, P., Zhao, R., Lai, D., Chen, K., Han, Y., Wan, G., Zheng, Y., Lu, C., et al.. (2021). The novel regulatory role of lncRNA-miRNA-mRNA Axis in amyotrophic lateral sclerosis: an integrated bioinformatics analysis. Comput. Math. Methods Med. 2021: 5526179, https://doi.org/10.1155/2021/5526179.Search in Google Scholar PubMed PubMed Central

Liu, X.Q., Li, B.X., Zeng, G.R., Liu, Q.Y., and Ai, D.M. (2019). Prediction of long non-coding RNAs based on deep learning. Genes 10: 273, https://doi.org/10.3390/genes10040273.Search in Google Scholar PubMed PubMed Central

Liu, Y. and Lu, Z. (2018). Long non-coding RNA NEAT1 mediates the toxic of Parkinson’s disease induced by MPTP/MPP+ via regulation of gene expression. Clin. Exp. Pharmacol. Physiol. 45: 841–848, https://doi.org/10.1111/1440-1681.12932.Search in Google Scholar PubMed

Lo Piccolo, L., Bonaccorso, R., Attardi, A., Li Greci, L., Romano, G., Sollazzo, M., Giurato, G., Ingrassia, A.M.R., Feiguin, F., Corona, D.F.V., et al.. (2018). Loss of ISWI function in Drosophila nuclear bodies drives cytoplasmic redistribution of Drosophila TDP-43. Int. J. Mol. Sci. 19: 1082, https://doi.org/10.3390/ijms19041082.Search in Google Scholar PubMed PubMed Central

Lo Piccolo, L. and Yamaguchi, M. (2017). RNAi of arcRNA hsrω affects sub-cellular localization of Drosophila FUS to drive neurodiseases. Exp. Neurol. 292: 125–134, https://doi.org/10.1016/j.expneurol.2017.03.011.Search in Google Scholar PubMed

Magaña, J.J., Velázquez-Pérez, L., and Cisneros, B. (2013). Spinocerebellar ataxia type 2: clinical presentation, molecular mechanisms, and therapeutic perspectives. Mol. Neurobiol. 47: 90–104, https://doi.org/10.1007/s12035-012-8348-8.Search in Google Scholar PubMed

Majounie, E., Renton, A.E., Mok, K., Dopper, E.G., Waite, A., Rollinson, S., Chiò, A., Restagno, G., Nicolaou, N., Simon-Sanchez, J., et al.. (2012). Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study. Lancet Neurol. 11: 323–330, https://doi.org/10.1016/s1474-4422(12)70043-1.Search in Google Scholar

Malik, A.M. and Barmada, S.J. (2020). TDP-43 nuclear bodies: a NEAT response to stress? Mol. Cell 79: 362–364, https://doi.org/10.1016/j.molcel.2020.07.018.Search in Google Scholar PubMed PubMed Central

Manjupriya, R., Pouthika, K., Madhumitha, G., and Roopan, S.M. (2023). Biological aspects of nitrogen heterocycles for amyotrophic lateral sclerosis. Appl. Microbiol. Biotechnol. 107: 43–56, https://doi.org/10.1007/s00253-022-12317-y.Search in Google Scholar PubMed

Masrori, P. and Van Damme, P. (2020). Amyotrophic lateral sclerosis: a clinical review. Eur. J. Neurol. 27: 1918–1929, https://doi.org/10.1111/ene.14393.Search in Google Scholar PubMed PubMed Central

Masrour, M., Khanmohammadi, S., Fallahtafti, P., and Rezaei, N. (2023). Long non-coding RNA as a potential diagnostic biomarker in head and neck squamous cell carcinoma: a systematic review and meta-analysis. PLoS One 18: e0291921, https://doi.org/10.1371/journal.pone.0291921.Search in Google Scholar PubMed PubMed Central

Matsukawa, K., Kukharsky, M.S., Park, S.K., Park, S., Watanabe, N., Iwatsubo, T., Hashimoto, T., Liebman, S.W., and Shelkovnikova, T.A. (2021). Long non-coding RNA NEAT1_1 ameliorates TDP-43 toxicity in in vivo models of TDP-43 proteinopathy. RNA Biol. 18: 1546–1554, https://doi.org/10.1080/15476286.2020.1860580.Search in Google Scholar PubMed PubMed Central

McCluggage, F. and Fox, A.H. (2021). Paraspeckle nuclear condensates: Global sensors of cell stress? BioEssays 43: e2000245.10.1002/bies.202000245Search in Google Scholar PubMed

Mello, S.S., Sinow, C., Raj, N., Mazur, P.K., Bieging-Rolett, K., Broz, D.K., Imam, J.F.C., Vogel, H., Wood, L.D., Sage, J., et al.. (2017). Neat1 is a p53-inducible lincRNA essential for transformation suppression. Genes Dev. 31: 1095–1108, https://doi.org/10.1101/gad.284661.116.Search in Google Scholar PubMed PubMed Central

Moreno-García, L., López-Royo, T., Calvo, A.C., Toivonen, J.M., de la Torre, M., Moreno-Martínez, L., Molina, N., Aparicio, P., Zaragoza, P., Manzano, R., et al.. (2020). Competing endogenous RNA networks as biomarkers in neurodegenerative diseases. Int. J. Mol. Sci. 21: 1–42, https://doi.org/10.3390/ijms21249582.Search in Google Scholar PubMed PubMed Central

Nakagawa, S., Yamazaki, T., Mannen, T., and Hirose, T. (2022). ArcRNAs and the formation of nuclear bodies. Mamm Genome 33: 382–401, https://doi.org/10.1007/s00335-021-09881-5.Search in Google Scholar PubMed

Nishimoto, Y., Nakagawa, S., Hirose, T., Okano, H.J., Takao, M., Shibata, S., Suyama, S., Kuwako, K., Imai, T., Murayama, S., et al.. (2013). The long non-coding RNA nuclear-enriched abundant transcript 1_2 induces paraspeckle formation in the motor neuron during the early phase of amyotrophic lateral sclerosis. Mol. Brain 6: 31, https://doi.org/10.1186/1756-6606-6-31.Search in Google Scholar PubMed PubMed Central

Nishimoto, Y., Nakagawa, S., and Okano, H. (2021). NEAT1 lncRNA and amyotrophic lateral sclerosis. Neurochem. Int. 150: 105175, https://doi.org/10.1016/j.neuint.2021.105175.Search in Google Scholar PubMed

O’Brien, J., Hayder, H., Zayed, Y., and Peng, C. (2018). Overview of MicroRNA biogenesis, mechanisms of actions, and circulation. Front. Endocrinol. 9: 402, https://doi.org/10.3389/fendo.2018.00402.Search in Google Scholar PubMed PubMed Central

Ozata, D.M., Gainetdinov, I., Zoch, A., O’Carroll, D., and Zamore, P.D. (2019). PIWI-interacting RNAs: small RNAs with big functions. Nat. Rev. Genet. 20: 89–108, https://doi.org/10.1038/s41576-018-0073-3.Search in Google Scholar PubMed

Panni, S., Lovering, R.C., Porras, P., and Orchard, S. (2020). Non-coding RNA regulatory networks. Biochim. Biophys. Acta, Gene Regul. Mech. 1863: 194417, https://doi.org/10.1016/j.bbagrm.2019.194417.Search in Google Scholar PubMed

Pelechano, V. and Steinmetz, L.M. (2013). Gene regulation by antisense transcription. Nat. Rev. Genet. 14: 880–893, https://doi.org/10.1038/nrg3594.Search in Google Scholar PubMed

Pinto, C., Medinas, D.B., Fuentes-Villalobos, F., Maripillán, J., Castro, A.F., Martínez, A.D., Osses, N., Hetz, C., and Henríquez, J.P. (2019). β-catenin aggregation in models of ALS motor neurons: GSK3β inhibition effect and neuronal differentiation. Neurobiol. Dis. 130: 104497, https://doi.org/10.1016/j.nbd.2019.104497.Search in Google Scholar PubMed

Prasad, A., Bharathi, V., Sivalingam, V., Girdhar, A., and Patel, B.K. (2019). Molecular mechanisms of TDP-43 misfolding and pathology in amyotrophic lateral sclerosis. Front. Mol. Neurosci. 12: 25, https://doi.org/10.3389/fnmol.2019.00025.Search in Google Scholar PubMed PubMed Central

Prasanth, K.V., Rajendra, T.K., Lal, A.K., and Lakhotia, S.C. (2000). Omega speckles – a novel class of nuclear speckles containing hnRNPs associated with noncoding hsr-omega RNA in Drosophila. J. Cell Sci. 113: 3485–3497, https://doi.org/10.1242/jcs.113.19.3485.Search in Google Scholar PubMed

Rai, M.I., Alam, M., Lightfoot, D.A., Gurha, P., and Afzal, A.J. (2019). Classification and experimental identification of plant long non-coding RNAs. Genomics 111: 997–1005, https://doi.org/10.1016/j.ygeno.2018.04.014.Search in Google Scholar PubMed

Ransohoff, J.D., Wei, Y., and Khavari, P.A. (2018). The functions and unique features of long intergenic non-coding RNA. Nat. Rev. Mol. Cell Biol. 19: 143–157, https://doi.org/10.1038/nrm.2017.104.Search in Google Scholar PubMed PubMed Central

Ravnik-Glavač, M. and Glavač, D. (2020). Circulating RNAs as potential biomarkers in amyotrophic lateral sclerosis. Int. J. Mol. Sci. 21: 1714, https://doi.org/10.3390/ijms21051714.Search in Google Scholar PubMed PubMed Central

Renton, A.E., Majounie, E., Waite, A., Simón-Sánchez, J., Rollinson, S., Gibbs, J.R., Schymick, J.C., Laaksovirta, H., van Swieten, J.C., Myllykangas, L., et al.. (2011). A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72: 257–268, https://doi.org/10.1016/j.neuron.2011.09.010.Search in Google Scholar PubMed PubMed Central

Rey, F., Maghraby, E., Messa, L., Esposito, L., Barzaghini, B., Pandini, C., Bordoni, M., Gagliardi, S., Diamanti, L., Raimondi, M.T., et al.. (2023). Identification of a novel pathway in sporadic Amyotrophic Lateral Sclerosis mediated by the long non-coding RNA ZEB1-AS1. Neurobiol. Dis. 178: 106030, https://doi.org/10.1016/j.nbd.2023.106030.Search in Google Scholar PubMed

Rey, F., Marcuzzo, S., Bonanno, S., Bordoni, M., Giallongo, T., Malacarne, C., Cereda, C., Zuccotti, G.V., and Carelli, S. (2021). LncRNAs associated with neuronal development and oncogenesis are deregulated in SOD1-G93A murine model of amyotrophic lateral sclerosis. Biomedicines 9: 809, https://doi.org/10.3390/biomedicines9070809.Search in Google Scholar PubMed PubMed Central

Rinn, J.L. and Chang, H.Y. (2012). Genome regulation by long noncoding RNAs. Annu. Rev. Biochem. 81: 145–166, https://doi.org/10.1146/annurev-biochem-051410-092902.Search in Google Scholar PubMed PubMed Central

Sasaki, Y.T., Ideue, T., Sano, M., Mituyama, T., and Hirose, T. (2009). MENepsilon/beta noncoding RNAs are essential for structural integrity of nuclear paraspeckles. Proc. Natl. Acad. Sci. U. S. A. 106: 2525–2530, https://doi.org/10.1073/pnas.0807899106.Search in Google Scholar PubMed PubMed Central

Shelkovnikova, T.A., Kukharsky, M.S., An, H., Dimasi, P., Alexeeva, S., Shabir, O., Heath, P.R., and Buchman, V.L. (2018). Protective paraspeckle hyper-assembly downstream of TDP-43 loss of function in amyotrophic lateral sclerosis. Mol. Neurodegener. 13: 30, https://doi.org/10.1186/s13024-018-0263-7.Search in Google Scholar PubMed PubMed Central

Shelkovnikova, T.A., Robinson, H.K., Troakes, C., Ninkina, N., and Buchman, V.L. (2014). Compromised paraspeckle formation as a pathogenic factor in FUSopathies. Hum. Mol. Genet. 23: 2298–2312, https://doi.org/10.1093/hmg/ddt622.Search in Google Scholar PubMed PubMed Central

Singh, A.K. (2022). Hsrω and other lncRNAs in neuronal functions and disorders in Drosophila. Life 13: 17.10.3390/life13010017Search in Google Scholar PubMed PubMed Central

Smith, K.P., Hall, L.L., and Lawrence, J.B. (2020). Nuclear hubs built on RNAs and clustered organization of the genome. Curr. Opin. Cell Biol. 64: 67–76, https://doi.org/10.1016/j.ceb.2020.02.015.Search in Google Scholar PubMed PubMed Central

Spitale, R.C., Tsai, M.-C., and Chang, H.Y. (2011). RNA templating the epigenome. Epigenetics 6: 539–543, https://doi.org/10.4161/epi.6.5.15221.Search in Google Scholar PubMed PubMed Central

Sproviero, D., Gagliardi, S., Zucca, S., Arigoni, M., Giannini, M., Garofalo, M., Fantini, V., Pansarasa, O., Avenali, M., Ramusino, M.C., et al.. (2022). Extracellular vesicles derived from plasma of patients with neurodegenerative disease have common transcriptomic profiling. Front. Aging Neurosci. 14: 785741, https://doi.org/10.3389/fnagi.2022.785741.Search in Google Scholar PubMed PubMed Central

Staats, K.A., Borchelt, D.R., Tansey, M.G., and Wymer, J. (2022). Blood-based biomarkers of inflammation in amyotrophic lateral sclerosis. Mol. Neurodegener. 17: 11, https://doi.org/10.1186/s13024-022-00515-1.Search in Google Scholar PubMed PubMed Central

St Laurent, G., Wahlestedt, C., and Kapranov, P. (2015). The Landscape of long noncoding RNA classification. Trends Genet. 31: 239–251, https://doi.org/10.1016/j.tig.2015.03.007.Search in Google Scholar PubMed PubMed Central

Sturmey, E. and Malaspina, A. (2022). Blood biomarkers in ALS: challenges, applications and novel frontiers. Acta Neurol. Scand. 146: 375–388, https://doi.org/10.1111/ane.13698.Search in Google Scholar PubMed PubMed Central

Sunwoo, H., Dinger, M.E., Wilusz, J.E., Amaral, P.P., Mattick, J.S., and Spector, D.L. (2009). MEN epsilon/beta nuclear-retained non-coding RNAs are up-regulated upon muscle differentiation and are essential components of paraspeckles. Genome Res. 19: 347–359, https://doi.org/10.1101/gr.087775.108.Search in Google Scholar PubMed PubMed Central

Suzuki, H., Shibagaki, Y., Hattori, S., and Matsuoka, M. (2019). C9-ALS/FTD-linked proline-arginine dipeptide repeat protein associates with paraspeckle components and increases paraspeckle formation. Cell Death Dis. 10: 746, https://doi.org/10.1038/s41419-019-1983-5.Search in Google Scholar PubMed PubMed Central

Tollervey, J.R., Curk, T., Rogelj, B., Briese, M., Cereda, M., Kayikci, M., König, J., Hortobágyi, T., Nishimura, A.L., Zupunski, V., et al.. (2011). Characterizing the RNA targets and position-dependent splicing regulation by TDP-43. Nat. Neurosci. 14: 452–458, https://doi.org/10.1038/nn.2778.Search in Google Scholar PubMed PubMed Central

Uszczynska-Ratajczak, B., Lagarde, J., Frankish, A., Guigó, R., and Johnson, R. (2018). Towards a complete map of the human long non-coding RNA transcriptome. Nat. Rev. Genet. 19: 535–548, https://doi.org/10.1038/s41576-018-0017-y.Search in Google Scholar PubMed PubMed Central

Van Damme, P., Veldink, J.H., van Blitterswijk, M., Corveleyn, A., van Vught, P.W., Thijs, V., Dubois, B., Matthijs, G., van den Berg, L.H., and Robberecht, W. (2011). Expanded ATXN2 CAG repeat size in ALS identifies genetic overlap between ALS and SCA2. Neurology 76: 2066–2072, https://doi.org/10.1212/wnl.0b013e31821f445b.Search in Google Scholar

Vangoor, V.R., Gomes-Duarte, A., and Pasterkamp, R.J. (2021). Long non-coding RNAs in motor neuron development and disease. J. Neurochem. 156: 777–801, https://doi.org/10.1111/jnc.15198.Search in Google Scholar PubMed PubMed Central

van Roon-Mom, W., Ferguson, C., and Aartsma-Rus, A. (2023). From failure to meet the clinical endpoint to U.S. food and drug administration approval: 15th antisense oligonucleotide therapy approved Qalsody (Tofersen) for treatment of SOD1 mutated amyotrophic lateral sclerosis. Nucleic Acid Ther. 33: 234–237, https://doi.org/10.1089/nat.2023.0027.Search in Google Scholar PubMed

Wang, C., Duan, Y., Duan, G., Wang, Q., Zhang, K., Deng, X., Qian, B., Gu, J., Ma, Z., Zhang, S., et al.. (2020). Stress induces dynamic, cytotoxicity-antagonizing TDP-43 nuclear bodies via paraspeckle LncRNA NEAT1-mediated liquid-liquid phase separation. Mol. Cell 79: 443–458.e447, https://doi.org/10.1016/j.molcel.2020.06.019.Search in Google Scholar PubMed

Wang, K.C. and Chang, H.Y. (2011). Molecular mechanisms of long noncoding RNAs. Mol. Cell 43: 904–914, https://doi.org/10.1016/j.molcel.2011.08.018.Search in Google Scholar PubMed PubMed Central

Wang, L., Zhong, X., Wang, S., and Liu, Y. (2021). ncDLRES: a novel method for non-coding RNAs family prediction based on dynamic LSTM and ResNet. BMC Bioinform. 22: 447, https://doi.org/10.1186/s12859-021-04365-4.Search in Google Scholar PubMed PubMed Central

Wang, Y., Zhao, P., Du, H., Cao, Y., Peng, Q., and Fu, L. (2023). LncDLSM: identification of long non-coding RNAs with deep learning-based sequence model. IEEE J. Biomed. Health Informat. 27: 2117–2127, https://doi.org/10.1109/jbhi.2023.3247805.Search in Google Scholar

Wu, H., Yang, L., and Chen, L.L. (2017). The diversity of long noncoding RNAs and their generation. Trends Genet. 33: 540–552, https://doi.org/10.1016/j.tig.2017.05.004.Search in Google Scholar PubMed

Yadav, R., and Srivastava, P.(2018). Clustering, pathway enrichment, and protein–protein interaction analysis of gene expression in neurodevelopmental disorders. Adv. Pharmacol. Sci. 2018:3632159, https://doi.org/10.1155/2018/3632159.Search in Google Scholar PubMed PubMed Central

Yamazaki, T., Souquere, S., Chujo, T., Kobelke, S., Chong, Y.S., Fox, A.H., Bond, C.S., Nakagawa, S., Pierron, G., and Hirose, T. (2018). Functional domains of NEAT1 architectural lncRNA induce paraspeckle assembly through phase separation. Mol. Cell 70: 1038–1053.e1037, https://doi.org/10.1016/j.molcel.2018.05.019.Search in Google Scholar PubMed

Yang, C., Yang, L., Zhou, M., Xie, H., Zhang, C., Wang, M.D., and Zhu, H. (2018). LncADeep: an ab initio lncRNA identification and functional annotation tool based on deep learning. Bioinformatics 34: 3825–3834, https://doi.org/10.1093/bioinformatics/bty428.Search in Google Scholar PubMed

Yang, S., Yang, H., Luo, Y., Deng, X., Zhou, Y., and Hu, B. (2021a). Long non-coding RNAs in neurodegenerative diseases. Neurochem. Int. 148: 105096, https://doi.org/10.1016/j.neuint.2021.105096.Search in Google Scholar PubMed

Yang, X., Ji, Y., Wang, W., Zhang, L., Chen, Z., Yu, M., Shen, Y., Ding, F., Gu, X., and Sun, H. (2021b). Amyotrophic lateral sclerosis: molecular mechanisms, biomarkers, and therapeutic strategies. Antioxidants 10: 1012.10.3390/antiox10071012Search in Google Scholar PubMed PubMed Central

Yao, Z.T., Yang, Y.M., Sun, M.M., He, Y., Liao, L., Chen, K.S., and Li, B. (2022). New insights into the interplay between long non-coding RNAs and RNA-binding proteins in cancer. Cancer Commun. 42: 117–140, https://doi.org/10.1002/cac2.12254.Search in Google Scholar PubMed PubMed Central

Yu, Y., Pang, D., Li, C., Gu, X., Chen, Y., Ou, R., Wei, Q., and Shang, H. (2022). The expression discrepancy and characteristics of long non-coding RNAs in peripheral blood leukocytes from amyotrophic lateral sclerosis patients. Mol. Neurobiol. 59: 3678–3689, https://doi.org/10.1007/s12035-022-02789-4.Search in Google Scholar PubMed

Received: 2023-12-14
Accepted: 2024-02-18
Published Online: 2024-03-08

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 27.4.2024 from https://www.degruyter.com/document/doi/10.1515/revneuro-2023-0155/html
Scroll to top button