Skip to main content
Log in

Subacute Exposure to Gaseous Pollutants from Diesel Engine Exhaust Attenuates Capsaicin-Induced Cardio-Pulmonary Reflex Responses Involving Oxidant Stress Mechanisms in Adult Wistar Rats

  • Research
  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Intravenous injection of capsaicin produces vagal-mediated protective cardio-pulmonary (CP) reflexes manifesting as tachypnea, bradycardia, and triphasic blood pressure (BP) response in anesthetized rats. Particulate matter from diesel engine exhaust has been reported to attenuate these reflexes. However, the effects of gaseous constituents of diesel exhaust are not known. Therefore, the present study was designed to investigate the effects of gaseous pollutants in diesel exhaust, on capsaicin-induced CP reflexes in rat model. Adult male rats were randomly assigned to three groups: Non-exposed (NE) group, filtered diesel exhaust-exposed (FDE) group and N-acetyl cysteine (NAC)-treated FDE group. FDE group of rats (n = 6) were exposed to filtered diesel exhaust for 5 h a day for 5 days (D1–D5), and were taken for dissection on day 6 (D6), while NE group of rats (n = 6) remained unexposed. On D6, rats were anesthetized, following which jugular vein was cannulated for injection of chemicals, and femoral artery was cannulated to record the BP. Lead II electrocardiogram and respiratory movements were also recorded. Results show that intravenous injection of capsaicin (0.1 ml; 10 µg/kg) produced immediate tachypneic, hyperventilatory, hypotensive, and bradycardiac responses in both NE and FDE groups of rats. However, these capsaicin-induced CP responses were significantly attenuated in FDE group as compared to the NE group of rats. Further, FDE-induced attenuation of capsaicin-evoked CP responses were diminished in the N-acetyl cysteine-treated FDE rats. These findings demonstrate that oxidant stress mechanisms could possibly be involved in inhibition of CP reflexes by gaseous pollutants in diesel engine exhaust.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article at relevant places. Data from the study will be made available by the corresponding author upon reasonable request.

References

  1. Kelly, F. J., & Fussell, J. C. (2011). Air pollution and airway disease. Clinical and Experimental Allergy, 41(8), 1059–1071. https://doi.org/10.1111/j.1365-2222.2011.03776.x

    Article  CAS  PubMed  Google Scholar 

  2. Riedl, M., & Diaz-Sanchez, D. (2005). Biology of diesel exhaust effects on respiratory function. Journal of Allergy Clinical Immunology, 115(2), 221–228. https://doi.org/10.1016/j.jaci.2004.11.047

    Article  CAS  PubMed  Google Scholar 

  3. Lewis, A. C., Carslaw, D. C., & Kelly, F. J. (2015). Vehicle emissions: Diesel pollution long underreported. Nature, 526(7572), 195. https://doi.org/10.1038/526195c

    Article  CAS  PubMed  Google Scholar 

  4. Bernstein, D. I. (2012). Diesel exhaust exposure, wheezing and sneezing. Allergy, Asthma and Immunology Research, 4(4), 178–183. https://doi.org/10.4168/aair.2012.4.4.178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Samoli, E., Atkinson, R. W., Analitis, A., Fuller, G. W., Green, D. C., Mudway, I., Anderson, H. R., & Kelly, F. J. (2016). Associations of short-term exposure to traffic-related air pollution with cardiovascular and respiratory hospital admissions in London, UK. Occupational and Environmental Medicine, 73(5), 300–307. https://doi.org/10.1136/oemed-2015-103136

    Article  PubMed  Google Scholar 

  6. Chen, H., Zhang, Z., van Donkelaar, A., Bai, L., Martin, R. V., Lavigne, E., Kwong, J. C., & Burnett, R. T. (2020). Understanding the joint impacts of fine particulate matter concentration and composition on the incidence and mortality of cardiovascular disease: A component-adjusted approach. Environmental Science and Technology, 54(7), 4388–4399. https://doi.org/10.1021/acs.est.9b06861

    Article  CAS  PubMed  Google Scholar 

  7. Brook, R. D., Franklin, B., Cascio, W., Hong, Y., Howard, G., Lipsett, M., Luepker, R., Mittleman, M., Samet, J., et al. (2004). Air pollution and cardiovascular disease: A statement for healthcare professionals from the Expert Panel on Population and Prevention Science of the American Heart Association. Circulation, 109(21), 2655–2671. https://doi.org/10.1161/01.CIR.0000128587.30041.C8

    Article  PubMed  Google Scholar 

  8. Bautista, D. M., Jordt, S. E., Nikai, T., Tsuruda, P. R., Read, A. J., Poblete, J., Yamoah, E. N., Basbaum, A. I., & Julius, D. (2006). TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell, 124(6), 1269–1282. https://doi.org/10.1016/j.cell.2006.02.023

    Article  CAS  PubMed  Google Scholar 

  9. Bauer, R. N., Diaz-Sanchez, D., & Jaspers, I. (2012). Effects of air pollutants on innate immunity: The role of toll-like receptors and nucleotide- binding oligomerization domain-like receptors. Journal of Allergy and Clinical Immunology, 129(1), 14–24. https://doi.org/10.1016/j.jaci.2011.11.004

    Article  CAS  PubMed  Google Scholar 

  10. Bass, V., Gordon, C. J., Jarema, K. A., MacPhail, R. C., Cascio, W. E., Phillips, P. M., Ledbetter, A. D., Schladweiler, M. C., Andrews, D., et al. (2013). Ozone induces glucose intolerance and systemic metabolic effects in young and aged Brown Norway rats. Toxicology and Applied Pharmacology, 273(3), 551–560. https://doi.org/10.1016/j.taap.2013.09.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Berger, A., Zareba, W., Schneider, A., Rückerl, R., Ibald-Mulli, A., Cyrys, J., Wichmann, H. E., & Peters, A. (2006). Runs of ventricular and supraventricular tachycardia triggered by air pollution in patients with coronary heart disease. Journal of Occupational and Environmental Medicine, 48(11), 1149–1158. https://doi.org/10.1097/01.jom.0000245921.15916.03

    Article  PubMed  Google Scholar 

  12. Bennett, B. A., Spannhake, E. W., Rule, A. M., Breysse, P. N., & Tankersley, C. G. (2018). The acute effects of age and particulate matter exposure on heart rate and heart rate variability in mice. Cardiovascular Toxicology, 18(6), 507–519. https://doi.org/10.1007/s12012-018-9461-3

    Article  CAS  PubMed  Google Scholar 

  13. Lee, L. Y., & Lundberg, J. M. (1994). Capsazepine abolishes pulmonary chemoreflexes induced by capsaicin in anesthetized rats. Journal of Applied Physiology, 76(5), 1848–1855. https://doi.org/10.1152/jappl.1994.76.5.1848

    Article  CAS  PubMed  Google Scholar 

  14. Pingle, S. C., Matta, J. A., & Ahern, G. P. (2007). Capsaicin receptor: TRPV1 a promiscuous TRP channel. Handbook of Experimental Pharmacology, 179, 155–171. https://doi.org/10.1007/978-3-540-34891-7_9

    Article  CAS  Google Scholar 

  15. Toh, C. C., Lee, T. S., & Kiang, A. K. (1955). The pharmacological actions of capsaicin and analogues. British Journal of Pharmacology and Chemotherapy, 10(2), 175–182. https://doi.org/10.1111/j.1476-5381.1955.tb00079.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Coleridge, H. M., Coleridge, J. C. G., & Kidd, C. (1964). Role of the pulmonary arterial baroreceptors in the effects produced by capsaicin in the dog. Journal of Physiology, 170(2), 272–285. https://doi.org/10.1113/jphysiol.1964.sp007330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ravi, K., & Singh, M. (1996). Role of vagal lung C-fibres in the cardiorespiratory effects of capsaicin in monkeys. Respiratory Physiology, 106(2), 137–151. https://doi.org/10.1016/s0034-5687(96)00070-9

    Article  CAS  Google Scholar 

  18. Donnerer, J., & Lembeck, F. (1982). Analysis of the effects of intravenously injected capsaicin in the rat. Naunyn-Schmiedebergs Archives of Pharmacology, 320(1), 54–57. https://doi.org/10.1007/BF00499072

    Article  CAS  PubMed  Google Scholar 

  19. Skofitsch, G., Saria, A., & Lembeck, F. (1983). Phenyldiguanide and capsaicin stimulate functionally different populations of afferent C-fibres. Neuroscience Letters, 42(1), 89–94. https://doi.org/10.1016/0304-3940(83)90427-5

    Article  CAS  PubMed  Google Scholar 

  20. Dutta, A., & Deshpande, S. B. (2010). Mechanisms underlying the hypertensive response induced by capsaicin. International Journal of Cardiology, 145(2), 358–359. https://doi.org/10.1016/j.ijcard.2010.02.034

    Article  PubMed  Google Scholar 

  21. Widdicombe, J. G. (1998). The J Reflex. Journal of Physiology, 511, 2. https://doi.org/10.1111/j.1469-7793.1998.002bi.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Deering-Rice, C. E., Romero, E. G., Shapiro, D., Hughen, R. W., Light, A. R., Yost, G. S., Veranth, J. M., & Reilly, C. A. (2011). Electrophilic components of diesel exhaust particles (DEP) activate transient receptor potential ankyrin-1 (TRPA1): A probable mechanism of acute pulmonary toxicity for DEP. Chemical Research in Toxicology, 24(6), 950–959. https://doi.org/10.1021/tx200123z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li, J., Kanju, P., Patterson, M., Chew, W. L., Cho, S. H., Gilmour, I., Oliver, T., Yasuda, R., Ghio, A., et al. (2011). TRPV4-mediated calcium influx into human bronchial epithelia upon exposure to diesel exhaust particles. Environmental Health Perspectives, 119(6), 784–793. https://doi.org/10.1289/ehp.1002807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kumar, S., Bhagat, P., Pandey, S., & Pandey, R. (2022). The role of antioxidant agent (N-acetylcysteine) in oleic acid-induced acute lung injury in a rat model. Cureus, 14(9), e29478. https://doi.org/10.7759/cureus.29478

    Article  PubMed  PubMed Central  Google Scholar 

  25. Revand, R., & Singh, S. K. (2020). Retrograde cannulation of femoral artery: A novel experimental design for the precise elicitation of vasosensory reflexes in anesthetized rats. MethodsX, 7, 101017. https://doi.org/10.1016/j.mex.2020.101017

    Article  PubMed  PubMed Central  Google Scholar 

  26. Revand, R., & Singh, S. K. (2021). Ipsilateral somatic nerves mediate histamine-induced vasosensory reflex responses involving perivascular afferents in rat models. Scientific Reports, 11(1), 14648. https://doi.org/10.1038/s41598-021-94110-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Singh, S. K., Mandal, M. B., & Ravindran, R. (2020). Instillation of bradykinin into femoral artery elicits cardiorespiratory reflexes involving perivascular afferents in anesthetized rats. Physiology International, 107(1), 40–54. https://doi.org/10.1556/2060.2020.00009

    Article  CAS  PubMed  Google Scholar 

  28. Dutta, A., Akella, A., & Deshpande, S. B. (2013). A study to investigate capsaicin-induced pressure response in vagotomized rats. Indian Journal of Pharmacology, 45(4), 365–370. https://doi.org/10.4103/0253-7613.115019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cavallari, J. M., Fang, S. C., Eisen, E. A., Schwartz, J., Hauser, R., Herrick, R. F., & Christiani, D. C. (2008). Time course of heart rate variability decline following particulate matter exposures in an occupational cohort. Inhalation Toxicology, 20(4), 415–422. https://doi.org/10.1080/08958370801903800

    Article  CAS  PubMed  Google Scholar 

  30. Park, S. K., O’Neill, M. S., Vokonas, P. S., Sparrow, D., & Schwartz, J. (2005). Effects of air pollution on heart rate variability: The VA normative aging study. Environmental Health Perspectives, 113(3), 304–309. https://doi.org/10.1289/ehp.7447

    Article  PubMed  Google Scholar 

  31. Tsuji, H., Larson, M. G., Venditti, F. J., Manders, E. S., Evans, J. C., Feldman, C. L., & Levy, D. (1996). Impact of reduced heart rate variability on risk for cardiac events. The Framingham heart study. Circulation, 94(11), 2850–2855. https://doi.org/10.1161/01.cir.94.11.2850

    Article  CAS  PubMed  Google Scholar 

  32. Thorén, P. (1979). Role of cardiac vagal C-fibers in cardiovascular control. Reviews of Physiology, Biochemistry and Pharmacology, 86, 1–94. https://doi.org/10.1007/BFb0031531

    Article  PubMed  Google Scholar 

  33. Coleridge, J. C., & Coleridge, H. M. (1984). Afferent vagal c fibre innervation of the lungs and airways and its functional significance. Reviews of Physiology, Biochemistry and Pharmacology, 99, 1–110. https://doi.org/10.1007/BFb0027715

    Article  CAS  PubMed  Google Scholar 

  34. Zoccal, D. B., Furuya, W. I., Bassi, M., Colombari, D. S., & Colombari, E. (2014). The nucleus of the solitary tract and the coordination of respiratory and sympathetic activities. Frontiers in Physiology, 5, 238. https://doi.org/10.3389/fphys.2014.00238

    Article  PubMed  PubMed Central  Google Scholar 

  35. Caterina, M. J., Schumacher, M. A., Tominaga, M., Rosen, T. A., Levine, J. D., & Julius, D. (1997). The capsaicin receptor: A heat-activated ion channel in the pain pathway. Nature, 389(6653), 816–824. https://doi.org/10.1038/39807

    Article  CAS  PubMed  Google Scholar 

  36. Ho, C. Y., Gu, Q., Lin, Y. S., & Lee, L. Y. (2001). Sensitivity of vagal afferent endings to chemical irritants in the rat lung. Respiratory Physiology, 127(2–3), 113–124. https://doi.org/10.1016/s0034-5687(01)00241-9

    Article  CAS  Google Scholar 

  37. Kollarik, M., & Undem, B. J. (2004). Activation of bronchopulmonary vagal afferent nerves with bradykinin, acid and vanilloid receptor agonists in wild-type and TRPV1−/− mice. Journal of Physiology, 555(1), 115–123. https://doi.org/10.1113/jphysiol.2003.054890

    Article  CAS  PubMed  Google Scholar 

  38. Clifford, P. S., Litzow, J. T., & Coon, R. L. (1987). Pulmonary depressor reflex elicited by capsaicin in conscious intact and lung-denervated dogs. American Journal of Physiology, 252, R394–R397. https://doi.org/10.1152/ajpregu.1987.252.2.R394

    Article  CAS  PubMed  Google Scholar 

  39. Li, N., Wang, M., Oberley, T. D., Sempf, J. M., & Nel, A. E. (2002). Comparison of the pro-oxidative and proinflammatory effects of organic diesel exhaust particle chemicals in bronchial epithelial cells and macrophages. Journal of Immunology, 169(8), 4531–4541. https://doi.org/10.4049/jimmunol.169.8.4531

    Article  CAS  Google Scholar 

  40. Hetland, R. B., Cassee, F. R., Refsnes, M., Schwarze, P. E., Låg, M., Boere, A. J., & Dybing, E. (2004). Release of inflammatory cytokines, cell toxicity and apoptosis in epithelial lung cells after exposure to ambient air particles of different size fractions. Toxicology In Vitro, 18(2), 203–212. https://doi.org/10.1016/s0887-2333(03)00142-5

    Article  CAS  PubMed  Google Scholar 

  41. Tao, F., Gonzalez-Flecha, B., & Kobzik, L. (2003). Reactive oxygen species in pulmonary inflammation by ambient particulates. Free Radical Biology and Medicine, 35(4), 327–340. https://doi.org/10.1016/s0891-5849(03)00280-6

    Article  CAS  PubMed  Google Scholar 

  42. Dick, C. A., Singh, P., Daniels, M., Evansky, P., Becker, S., & Gilmour, M. I. (2003). Murine pulmonary inflammatory responses following instillation of size-fractionated ambient particulate matter. Journal of Toxicology and Environ Health, Part A, 66(23), 2193–2207. https://doi.org/10.1080/716100636

    Article  CAS  Google Scholar 

  43. Suter, P. M., Domenighetti, G., Schaller, M. D., Laverrière, M. C., Ritz, R., & Perret, C. (1994). N-acetylcysteine enhances recovery from acute lung injury in man. A randomized, double-blind, placebo-controlled clinical study. Chest, 105(1), 190–194. https://doi.org/10.1378/chest.105.1.190

    Article  CAS  PubMed  Google Scholar 

  44. Särnstrand, B., Tunek, A., Sjödin, K., & Hallberg, A. (1995). Effects of N-acetylcysteine stereoisomers on oxygen-induced lung injury in rats. Chemico-Biological Interaction, 94(2), 157–164. https://doi.org/10.1016/0009-2797(94)03332-3

    Article  Google Scholar 

  45. Fan, E., Brodie, D., & Slutsky, A. S. (2018). Acute respiratory distress syndrome: Advances in diagnosis and treatment. JAMA, 319(7), 698–710. https://doi.org/10.1001/jama.2017.21907

    Article  PubMed  Google Scholar 

  46. Raghu, G., Berk, M., Campochiaro, P. A., Jaeschke, H., Marenzi, G., Richeldi, L., Wen, F. Q., Nicoletti, F., & Calverley, P. M. A. (2021). The multifaceted therapeutic role of N-acetylcysteine (NAC) in disorders characterized by oxidative stress. Current Neuropharmacology, 19(8), 1202–1224. https://doi.org/10.2174/1570159x19666201230144109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mohanty, R. R., Padhy, B. M., Das, S., & Meher, B. R. (2021). Therapeutic potential of N-acetyl cysteine (NAC) in preventing cytokine storm in COVID-19: Review of current evidence. European Review for Medical and Pharmacological Sciences, 25(6), 2802–2807. https://doi.org/10.26355/eurrev20210325442

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors convey their thankfulness to Prof. S. B. Deshpande and Prof. Sanjeev K. Singh from the Department of Physiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India, whose earlier works have inspired the methodology of the present study. Further, the authors also acknowledge the Department of Mechanical Engineering, Indian Institute of Technology, New Delhi, for their inputs regarding the development and fabrication of the animal whole body exposure chamber.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

The study was conceptualized by RR and AP. Data collection and data analysis were performed by RR, AD and SS. The first draft of the manuscript was written by RR, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Asmita Patil.

Ethics declarations

Competing interest

The authors have no competing interests to declare that are relevant to the content of this article.

Ethical Approval

The present study was approved by the Institutional Animal Ethics Committee of the All India Institute of Medical Sciences, New Delhi, India (Ref. No. 391/IAEC-1/2022 dated 17.03.2023).

Consent to Participate and Publication

Not applicable.

Additional information

Handling Editor: Matthew Campen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Revand, R., Dontham, A., Sarkar, S. et al. Subacute Exposure to Gaseous Pollutants from Diesel Engine Exhaust Attenuates Capsaicin-Induced Cardio-Pulmonary Reflex Responses Involving Oxidant Stress Mechanisms in Adult Wistar Rats. Cardiovasc Toxicol 24, 396–407 (2024). https://doi.org/10.1007/s12012-024-09842-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-024-09842-9

Keywords

Navigation