Skip to main content
Log in

Investigation of the Recovery Process During Continuous Annealing of Cold-Rolled Automotive Steels

  • Published:
Metallurgist Aims and scope

The paper presents a brief analytical review of the current state of research in the field of recovery and its modeling in order to predict the structure and properties, as well as a review of experimental research methods and mathematical models of the processes of structure formation during annealing of cold-rolled steels. The paper also presents the results of an experimental study of the recovery process in cold-rolled automotive steels using various techniques and describes a mathematical model for calculating the kinetics of this process depending on the temperature and chemical composition of steels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

References

  1. F. J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, Elsevier, Oxford (2005).

    Google Scholar 

  2. A. Martínez-de-Guereñu, F. Arizti, M. Diaz-Fuentes, and I. Gutiérrez, “Determination of the recovery kinetics during the annealing of cold rolled low carbon steels,” Mater. Sci. Forum, 467, 141–146 (2004).

    Article  Google Scholar 

  3. M. Alvarez, A. Vicente, T. Perez, M. Vigliano, and F. Actis, “Metallurgical modeling of annealing of Nb–Ti high resistance cold rolled steel sheets,” Proc. Iron & Steel Technol. Confer., 2, 259–267 (2005).

    Google Scholar 

  4. Yu. S. Lukin, S. V. Bakhtin, A. S. Lukin, and A. A. Zaveryukha, “Structure control in IF steels during continuous annealing,” Stal’, No. 4, 57–59 (2012).

    Google Scholar 

  5. J. Kucera and K. Stransky, “Diffusion in iron, iron solid solutions and steels,” Mater. Sci. Eng., 52, 1–38 (1982).

    Article  CAS  Google Scholar 

  6. A. A. Vasiliev, N. G. Kolbasnikov, A. I. Rudskoi, and D. F. Sokolov, “Investigation of the kinetics of structural formation processes during heating of cold-rolled automotive steels,” Stal’, No. 10, 48–56 (2017).

    Google Scholar 

  7. A. A. Vasiliev, D. F. Sokolov, S. F. Sokolov, P. A. Glukhov, N. G. Kolbasnikov, and A. V. Mitrofanov, “Model for predicting the Lankford coefficient of commercial automotive steels,” Stal’, No. 2, 16–21 (2018).

    Google Scholar 

  8. J. Frost and M.F. Ashby, Deformation Mechanism Maps: The Plasticity and Creep of Metals and Ceramics, Oxford, Pergamon Press, New York (1982).

    Google Scholar 

  9. A. Smith, H. Lou, D.N. Hanlon, J. Sietsma, and S. Zwaag, “Recovery process in the ferrite phase in C-Mn steel,” ISIJ Int., 44, No. 7, 1188–1194 (2004).

    Article  CAS  Google Scholar 

  10. I. Timokhina, M. K. Miller, J. Wang, H. Beladi, and P. Cizek, “On the Ti–Mo–Fe–C atomic clustering during interphase precipitation in the Ti-Mo steel studied by advanced microscopic techniques,” Materials & Design, 111, 222–229 (2016).

    Article  CAS  Google Scholar 

  11. W. B. Morrison, “The effect of grain size on the stress-strain relationship in low-carbon steel,” Transactions of the ASM, 59, 824– 846 (1966).

    CAS  Google Scholar 

  12. A. P. Pierman, O. Bouaziz, T. Pardoen, P. J. Jacques, and L. Brassart, “The influence of microstructure and composition on the plastic behaviour of dual-phase steels,” Acta Mater., 73, 298–311 (2014).

    Article  CAS  Google Scholar 

  13. W. J. Dan, Z. Q. Lin, S. H. Li, and W. G. Zhang, “Study of the mixture strain hardening of multi-phase steels,” Mater. Sci. Eng. A, A552, 1–8 (2001).

    Google Scholar 

  14. I. Gutierrez, Mechanical Property Models for High-Strength Complex Microstructures, European Commission Research Fund for Coal and Steel, Final report (2008).

  15. I. Gutierrez, “Modelling the mechanical behaviour of steels with mixed microstructures,” in: Proc. 2nd Int. Conf. on Deformation Processing and Structure of Materials (2005), pp. 29–42.

  16. E. El-Magd, “Modeling and simulation of mechanical behavior,” in: Modeling and Simulation for Material Selection and Mechanical Design (2003), pp. 195–300.

  17. D.-W. Suh, “FEM modeling of flow curves for ferrite/pearlite two-phase steels,” ISIJ International, 41, No. 7, 782–787 (2001).

    Article  CAS  Google Scholar 

  18. Y. Tomota, M. Umemoto, N. Komatsubara, A. Hiramatsu, N. Nakajima, A. Moriya, and Y. Higo, “Prediction of mechanical properties of multi-phase steels based on stress strain curves,” ISIJ International, 32, No. 3, 343–349 (1992).

    Article  CAS  Google Scholar 

  19. M. A. Shtremel, Strength of Alloys, Part II, Deformation: College Textbook [in Russian], MISIS, Moscow (1997).

    Google Scholar 

  20. K. J. Kurzydłowski, B. Ralph, A. Chojnacka, and J. J. Bucki, “A quantitative description of recrystallization and grain growth in single phase bcc iron,” Acta Materialia, 44, No. 7, 3005–3013 (1996).

    Article  Google Scholar 

  21. K. Mukunthan and E. B. Hawbolt, “Modeling recovery and recrystallization kinetics in cold-rolled Ti–Nb stabilized interstitial-free steel,” Metallurgical and Materials Transactions A, 27, No. 11, 3410–3423 (1996).

    Article  Google Scholar 

  22. A. Smith, H. Luo, D. N. Hanlon, J. Sietsma, and S. Zwaag, “Recovery processes in the ferrite phase in C–Mn steel,” ISIJ International, 44, No. 7, 1188–1194 (2004).

    Article  CAS  Google Scholar 

  23. A. Martínez-de-Guerenu, F. Arizti, M. Diaz-Fuentes, and I. Gutiérrez, “Recovery during annealing in a cold rolled low carbon steel. Part I: Kinetics and microstructural characterization,” Acta Materialia, 52, 3657–3664 (2004).

    Article  Google Scholar 

  24. A. Martínez-de-Guerenu, F. Arizti, M. Diaz-Fuentes, and I. Gutiérrez, “Recovery during annealing in a cold rolled low carbon steel. Part II: Modeling the kinetics,” Acta Materialia, 52, 3665–3670 (2004).

    Article  Google Scholar 

  25. D. F. Sokolov, A. A. Ogoltcov, A. A. Vasilyev, N. G. Kolbasnikov, and S. F. Sokolov, “Modeling of microstructure and mechanical properties of hot rolled steels,” Materials Science Forum, 762, 116–121 (2013).

    Article  Google Scholar 

  26. K. Maeda, The Hot Deformation Behavior of an Fe–Al Alloy Steel in the Two Phase Region, PhD work – Master thesis, McMaster University, Canada (2014).

    Google Scholar 

  27. E. Nes, “Recovery revisited,” Acta Metallurgica, 43, No. 6, 2189–2207 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. S. Zhitelev.

Additional information

Translated from Metallurg, Vol. 67, No. 9, pp. 83–90, September, 2023. Russian DOI https://doi.org/10.52351/00260827_2023_09_83.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhitelev, P.S., Adigamov, R.R., Glukhov, P.A. et al. Investigation of the Recovery Process During Continuous Annealing of Cold-Rolled Automotive Steels. Metallurgist 67, 1351–1361 (2024). https://doi.org/10.1007/s11015-024-01627-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11015-024-01627-3

Keywords

Navigation