Skip to main content
Log in

Structure and Evolution of DNA Transposons of the L31 Superfamily in Bivalves

  • GENOMICS. TRANSCRIPTOMICS
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

The mobile genetic elements IS630/Tc1/mariner (ITm) are widespread DNA transposons that make a significant contribution to the evolution of eukaryotic genomes. With the start of large-scale application of next-generation sequencing (NGS) technologies and the emergence of many new whole genome sequences of organisms in nucleotide sequence collections, the ITm elements have been identified in most taxa of the eukaryotic tree of life. Although ITm diversity has been studied in detail, new elements are still found, thus expanding the respective DNA transposon group and calling for review of its classification. Bivalve L31 elements were for the first time analyzed in detail to describe their structures, diversity, distribution, and phylogenetic position among the ITm elements. The L31 transposons were found to form an independent superfamily of an ancient origin within the ITm group. Rather high diversity was observed within the L31 clade; i.e., five phylogenetic clusters were identified. In mollusks, the L31 transposons have been detected only in the subclass Autobranchia and predominate in diversity and number in the infraclass Pteriomorphia. A protein encoded by open reading frame 2 (ORF2) was shown to be an integral structural component of almost all full-length L31 elements. The results provide for a better understanding of the evolution of particular ITm transposons. Further study of the L31 transposons in other taxa (cnidarians) and functional investigation of the ORF2 protein product will help to better understand the evolution of DNA transposons, the mechanisms of their horizontal transfer, and their contribution to eukaryotic biodiversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Arkhipova I.R., Yushenova I.A. 2019. Giant transposons in eukaryotes: Is bigger better? Genome Biol. Evol. 11, 906–918. https://doi.org/10.1093/gbe/evz041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bourque G., Burns K.H., Gehring M., Gorbunova V., Seluanov A., Hammell M., Imbeault M., Izsvák Z., Levin H.L., Macfarlan T.S., Mager D.L., Feschotte C. 2018. Ten things you should know about transposable elements. Genome Biol. 19, 199. https://doi.org/10.1186/s13059-018-1577-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kidwell M.G., Lisch D.R. 2000. Transposable elements and host genome evolution. Trends Ecol. Evol. 15, 95–99. https://doi.org/10.1016/s0169-5347(99)01817-0

    Article  CAS  PubMed  Google Scholar 

  4. Sotero-Caio C.G., Platt R.N., Suh A., Ray D.A. 2017. Evolution and diversity of transposable elements in vertebrate genomes. Genome Biol. Evol. 9, 161–177. https://doi.org/10.1093/gbe/evw264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gao B., Shen D., Xue S. Chen C., Cui H., Song C. 2016. The contribution of transposable elements to size variations between four teleost genomes. Mob. DNA. 7, 4. https://doi.org/10.1186/s13100-016-0059-7

    Article  PubMed  PubMed Central  Google Scholar 

  6. Petrov D.A. 2001. Evolution of genome size: New approaches to an old problem. Trends Genet. 17, 23–28. https://doi.org/10.1016/s0168-9525(00)02157-0

    Article  CAS  PubMed  Google Scholar 

  7. Yurchenko N.N., Kovalenko L.V., Zakharov I.K. 2011. Transposable elements: Instability of genes and genomes. Russ. J. Genet., Appl. Res. 1, 489‒496.

    Google Scholar 

  8. Grabundzija I., Messing S.A., Thomas J. Cosby R.L., Bilic I., Miskey C., Gogol-Döring A., Kapitonov V., Diem T., Dalda A., Jurka J., Pritham E.J., Dyda F., Izsvák Z., Ivics Z. 2016. A Helitron transposon reconstructed from bats reveals a novel mechanism of genome shuffling in eukaryotes. Nat. Commun. 7, 10716. https://doi.org/10.1038/ncomms10716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Craig N.L., Chandler M., Gellert M., Lambowitz A., Rice P.A., Sandmeyer S. 2015. Mobile DNA III. Washington, USA: ASM Press.

    Book  Google Scholar 

  10. Sultana T., Zamborlini A., Cristofari G., Lesage P. 2017. Integration site selection by retroviruses and transposable elements in eukaryotes. Nat. Rev. Genet. 18, 292–308. https://doi.org/10.1038/nrg.2017.7

    Article  CAS  PubMed  Google Scholar 

  11. Blumenstiel J.P. 2019. Birth, school, work, death, and resurrection: The life stages and dynamics of transposable element proliferation. Genes (Basel). 10, 336. https://doi.org/10.3390/genes10050336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bowen N.J., Jordan I.K. 2007. Exaptation of protein coding sequences from transposable elements. Genome Dyn. 3, 147–162.

    Article  CAS  PubMed  Google Scholar 

  13. Venner S., Feschotte C., Biémont C. 2009. Dynamics of transposable elements: Towards a community ecology of the genome. Trends Genet. 25, 317–323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Boissinot S., Chevret P., Furano A.V. 2000. L1 (LINE‑1) retrotransposon evolution and amplification in recent human history. Mol. Biol. Evol. 17, 915–928. https://doi.org/10.1093/oxfordjournals.molbev.a026372

    Article  CAS  PubMed  Google Scholar 

  15. Platt R.N. 2nd, Vandewege M.W., Ray D.A. 2018. Mammalian transposable elements and their impacts on genome evolution. Chromosome Res. 26, 25–43. https://doi.org/10.1007/s10577-017-9570-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sinzelle L., Izsvák Z., Ivics Z. 2009. Molecular domestication of transposable elements: From detrimental parasites to useful host genes. Cell. Mol. Life Sci. 66, 1073–1093. https://doi.org/10.1007/s00018-009-8376-3

    Article  CAS  PubMed  Google Scholar 

  17. Chow K.C., Tung W.L. 2000. Magnetic field exposure stimulates transposition through the induction of DnaK/J synthesis. Biochem. Biophys. Res. Commun. 270, 745–748. https://doi.org/10.1006/bbrc.2000.2496

    Article  CAS  PubMed  Google Scholar 

  18. Bubenshchikova E.V., Antonenko O.V., Vasilyeva L.A., Ratner V.A. 2002. Induction of MGE 412 transpositions in spermatogenesis of Drosophila males separately by heat and cold shock. Russ. J. Genetics. 38, 36‒43.

    Article  CAS  Google Scholar 

  19. Del Re B., Garoia F., Mesirca P. Agostini C., Bersani F., Giorgi G. 2003. Extremely low frequency magnetic fields affect transposition activity in Escherichia coli. Radiat. Environ. Biophys. 42, 113–118. https://doi.org/10.1007/s00411-003-0192-9

    Article  CAS  PubMed  Google Scholar 

  20. Zakharenko L.P., Kovalenko L.V., Zakharov I.K., Perepelkina M.P. 2006. The effect of γ-radiation on induction of the hobo element transposition in Drosophila melanogaster. Russ. J. Genet. 42, 619‒622.

    Article  CAS  Google Scholar 

  21. Vasilyeva L.A., Vikhristyuk O.V., Antonenko O.V., Zakharov I.K. 2008. Induction of mobile genetic elements transposition in Drosophila melanogaster genome by different stress factors. Inform. Vestn. VOGiS. 11, 662‒671.

    Google Scholar 

  22. Cheresiz S.V., Yurchenko N.N., Ivannikov A.V., Zakharov I.K. 2008. Mobile elements and stress. Inform. Vestn. VOGiS. 12, 217–242.

    Google Scholar 

  23. Piacentini L., Fanti L., Specchia V., Bozzetti M.P., Berloco M., Palumbo G., Pimpinelli S. 2014. Transposons, environmental changes, and heritable induced phenotypic variability. Chromosoma. 123, 345–354. https://doi.org/10.1007/s00412-014-0464-y

    Article  PubMed  PubMed Central  Google Scholar 

  24. Auvinet J., Graça P., Belkadi L., Petit L., Bonnivard E., Dettaï A., Detrich W.H. 3rd, Ozouf-Costaz C., Higuet D. 2018. Mobilization of retrotransposons as a cause of chromosomal diversification and rapid speciation: The case for the Antarctic teleost genus Trematomus. BMC Genomics. 19, 339. https://doi.org/10.1186/s12864-018-4714-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kojima K.K. 2020. Structural and sequence diversity of eukaryotic transposable elements. Genes Genet. Syst. 94, 233–252. https://doi.org/10.1266/ggs.18-00024

    Article  CAS  PubMed  Google Scholar 

  26. Kapitonov V.V., Jurka J. 2008. A universal classification of eukaryotic transposable elements implemented in Repbase. Nat. Rev. Genet. 9, 411–412. https://doi.org/10.1038/nrg2165-c1

    Article  PubMed  Google Scholar 

  27. Wicker T., Sabot F., Hua-Van A., Bennetzen J.L., Capy P., Chalhoub B., Flavell A., Leroy P., Morgante M., Panaud O., Paux E., SanMiguel P., Schulman A.H. 2007. A unified classification system for eukaryotic transposable elements. Nat. Rev. Genet. 8, 973–982. https://doi.org/10.1038/nrg2165

    Article  CAS  PubMed  Google Scholar 

  28. Yuan Y.W., Wessler S.R. 2011. The catalytic domain of all eukaryotic cut-and-paste transposase superfamilies. Proc. Natl. Acad. Sci. U. S. A. 108, 7884–7889. https://doi.org/10.1073/pnas.110420810829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shi S., Puzakov M., Guan Z., Xiang K., Diaby M., Wang Y., Wang S., Song C., Gao B. 2021. Prokaryotic and eukaryotic horizontal transfer of Sailor (dd82e), a new superfamily of IS630-Tc1-Mariner DNA-transposons. Biology (Basel). 10, 1005. https://doi.org/10.3390/biology10101005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dupeyron M., Baril T., Bass C., Hayward A. 2020. Phylogenetic analysis of the Tc1/mariner superfamily reveals the unexplored diversity of pogo-like elements. Mob. DNA. 11, 21. https://doi.org/10.1186/s13100-020-00212-0

    Article  PubMed  PubMed Central  Google Scholar 

  31. Shao H.G., Tu Z.J. 2001. Expanding the diversity of the IS630-Tc1-mariner superfamily: Discovery of a unique DD37E transposon and reclassification of the DD37D and DD39D transposons. Genetics. 159, 1103–1115. https://doi.org/10.1093/genetics/159.3.1103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tellier M., Bouuaert C.C., Chalmers R. 2015. Mariner and the ITm superfamily of transposons. Microbiol. Spectr. 3, MDNA3-0033-2014. https://doi.org/10.1128/microbiolspec.MDNA3-0033-2014

  33. Gao B., Wang Y.L., Diaby M., Zong W., Shen D., Wang S., Chen C., Wang X., Song C. 2020. Evolution of pogo, a separate superfamily of IS630-Tc1-mariner transposons, revealing recurrent domestication events in vertebrates. Mob. DNA. 11, 25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Coy M.R., Tu Z.J. 2010. Gambol and Tc1 are two distinct families of DD34E transposons: Analysis of the Anopheles gambiae genome expands the diversity of the IS630-Tc1-mariner superfamily. Insect Mol. Biol. 14, 537–546. https://doi.org/10.1111/j.1365-2583.2005.00584.x

    Article  CAS  Google Scholar 

  35. Puzakov M.V., Puzakova L.V., Cheresiz S.V. 2018. An analysis of IS630/Tc1/mariner transposons in the genome of a pacific oyster Crassostrea gigas. J. Mol. Evol. 86, 566–580. https://doi.org/10.1007/s00239-018-9868-2

    Article  CAS  PubMed  Google Scholar 

  36. Altschul S.F., Madden T.L., Schäffer A.A., Zhang J., Zhang Z., Miller W., Lipman D.J. 1997. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402. https://doi.org/10.1093/nar/25.17.3389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yamada K.D., Tomii K., Katoh K. 2016. Application of the MAFFT sequence alignment program to large data—reexamination of the usefulness of chained guide trees. Bioinformatics. 32, 3246–3251. https://doi.org/10.1093/bioinformatics/btw4122016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nguyen L.T., Schmidt H.A., von Haeseler A., Minh B.Q. 2015. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268‒274. https://doi.org/10.1093/molbev/msu30039

    Article  CAS  PubMed  Google Scholar 

  39. Hoang D.T., Chernomor O., von Haeseler A., Minh B.Q., Vinh L.S. 2018. UFBoot2: Improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522. https://doi.org/10.1093/molbev/msx281

    Article  CAS  PubMed  Google Scholar 

  40. Kalyaanamoorthy S., Minh B.Q., Wong T.K.F., von Haeseler A., Jermiin L.S. 2017. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods. 14, 587–589. https://doi.org/10.1038/nmeth.4285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang H.H., Li G.Y., Xiong X.M., Han M.J., Zhang X.G., Dai F.Y. 2016. TRT, a vertebrate and protozoan Tc1-like transposon: Current activity and horizontal transfer. Genome Biol. Evol. 8, 2994–3005. https://doi.org/10.1093/gbe/evw213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sang Y., Gao B., Diaby M., Zong W., Chen C., Shen D., Wang S., Wang Y., Ivics Z., Song C. 2019. Incomer, a DD36E family of Tc1/mariner transposons newly discovered in animals. Mob. DNA. 10, 45. https://doi.org/10.1186/s13100-019-0188-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zong W., Gao B., Diaby M., Shen D., Wang S., Wang Y., Sang Y., Chen C., Wang X., Song C. 2020. Traveler, a new DD35E family of Tc1/mariner transposons, invaded vertebrates very recently. Genome Biol. Evol. 12, 66–76. https://doi.org/10.1093/gbe/evaa034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gao B., Zong W., Miskey C., Ullah N., Diaby M., Chen C., Wang X., Ivics Z., Song C. 2020. Intruder (DD38E), a recently evolved sibling family of DD34E/Tc1 transposons in animals. Mob. DNA. 11, 32. https://doi.org/10.1186/s13100-020-00227-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Puzakov M.V., Puzakova L.V., Cheresiz S.V. 2020. The Tc1-like elements with the spliceosomal introns in mollusk genomes. Mol. Genet. Genomics. 295, 621–633. https://doi.org/10.1007/s00438-020-01645-1

    Article  CAS  PubMed  Google Scholar 

  46. Shen D., Gao B., Miskey C., Chen C., Sang Y., Zong W., Wang S., Wang Y., Wang X., Ivics Z., Song C. 2020. Multiple invasions of Visitor, a DD41D family of Tc1/mariner transposons, throughout the evolution of vertebrates. Genome Biol. Evol. 12, 1060–1073. https://doi.org/10.1093/gbe/evaa135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Puzakov M.V., Puzakova L.V. 2022. Prevalence, diversity, and evolution of L18 (DD37E) transposons in the genomes of cnidarians. Mol. Biol. (Moscow). 56, 424‒436. https://doi.org/10.1134/S0026893322030104

    Article  CAS  Google Scholar 

  48. Wang S., Diaby M., Puzakov M., Ullah N., Wang Y., Danley P., Chen C., Wang X., Gao B., Song C. 2021. Divergent evolution profiles of DD37D and DD39D families of Tc1/mariner transposons in eukaryotes. Mol. Phylogenet. Evol. 161, 107143. https://doi.org/10.1016/j.ympev.2021.10714349

    Article  PubMed  Google Scholar 

  49. Puzakov M.V., Puzakova L.V., Cheresiz S.V., Sang Y. 2021. The IS630/Tc1/mariner transposons in three ctenophore genomes. Mol. Phylogenet. Evol. 163, 107231. https://doi.org/10.1016/j.ympev.2021.107231

    Article  PubMed  Google Scholar 

  50. Buchan D.W.A., Jones D.T. 2019. The PSIPRED protein analysis workbench: 20 years on. Nucl. Acids Res. 47, 402–407. https://doi.org/10.1093/nar/gkz297

    Article  CAS  Google Scholar 

  51. Crooks G.E., Hon G., Chandonia J.M., Brenner S.E. 2004. WebLogo: A sequence logo generator. Genome Res. 14, 1188–1190. https://doi.org/10.1101/gr.849004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Marchler-Bauer A., Bo Y., Han L., He J., Lanczycki C.J., Lu S., Chitsaz F., Derbyshire M.K., Geer R.C., Gonzales N.R., Gwadz M., Hurwitz D.I., Lu F., Marchler G.H., Song J.S., Thanki N., Wang Z., Yamashita R.A., Zhang D., Zheng C., Geer L.Y., Bryant S.H. 2017. CDD/SPARCLE: Functional classification of proteins via subfamily domain architectures. Nucleic Acids Res. 45, D200–D203. https://doi.org/10.1093/nar/gkw1129

    Article  CAS  PubMed  Google Scholar 

  53. Boratyn G.M., Schäffer A.A., Agarwala R., Altschul S.F., Lipman D.J., Madden T.L. 2012. Domain enhanced lookup time accelerated BLAST. Biol. Direct. 7, 12. https://doi.org/10.1186/1745-6150-7-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bryson K., Cozzetto D., Jones D.T. 2007. Computer-assisted protein domain boundary prediction using the DomPred server. Curr. Protein Pept. Sci. 8, 181–188. https://doi.org/10.2174/138920307780363415

    Article  CAS  PubMed  Google Scholar 

  55. Cozzetto D., Minneci F., Currant H., Jones D.T. 2016. FFPred 3: Feature-based function prediction for all Gene Ontology domains. Sci. Rep. 6, 31865. https://doi.org/10.1038/srep31865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Nugent T., Jones D.T. 2009. Transmembrane protein topology prediction using support vector machines. BMC Bioinformatics. 10, 159. https://doi.org/10.1186/1471-2105-10-159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Waterhouse A., Bertoni M., Bienert S., Wong G., Chinikar S., Hajivand Z., Mokhayeri H., Nowotny N., Kayedi M.H. 2018. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. 46, W296–W303. https://doi.org/10.1093/nar/gky427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ivics Z., Izsvák Z. 2015. Sleeping Beauty transposition. Microbiol. Spectr. 3, MDNA3-0042-2014. https://doi.org/10.1128/microbiolspec.MDNA3-0042-2014

  59. Ivics Z., Hackett P.B., Plasterk R.H., Izsvak Z. 1997. Molecular reconstruction of Sleeping Beauty, a Tc1-like transposon from fish, and its transposition in human cells. Cell. 91, 501–510. https://doi.org/10.1016/s0092-8674(00)80436-560

    Article  CAS  PubMed  Google Scholar 

  60. Plasterk R.H., Izsvak Z., Ivics Z. 1999. Resident aliens: The Tc1/mariner superfamily of transposable elements. Trends Genet. 15, 326–332. https://doi.org/10.1016/s0168-9525(99)01777-1

    Article  CAS  PubMed  Google Scholar 

  61. Arai Y., Hosoda F., Kobayashi H., Arai K., Hayashi Y., Kamada N., Kaneko Y., Ohki M. 1997. The inv(11)(p15q22) chromosome translocation of de novo and therapy-related myeloid malignancies results in fusion of the nucleoporin gene, NUP98, with the putative RNA helicase gene, DDX10. Blood. 89, 3936–3944.

    Article  CAS  PubMed  Google Scholar 

  62. Lee T.I., Young R.A. 2000. Transcription of eukaryotic protein-coding genes. Annu. Rev. Genet. 34, 77–137. https://doi.org/10.1146/annurev.genet.34.1.77

    Article  CAS  PubMed  Google Scholar 

  63. Nigg E.A., Raff J.W. 2009. Centrioles, centrosomes, and cilia in health and disease. Cell. 139, 663–678. https://doi.org/10.1016/j.cell.2009.10.036

    Article  CAS  PubMed  Google Scholar 

  64. Klug A. 2010. The discovery of zinc fingers and their applications in gene regulation and genome manipulation. Annu. Rev. Biochem. 79, 213–231. https://doi.org/10.1146/annurev-biochem-010909-095056

    Article  CAS  PubMed  Google Scholar 

  65. Kumar M., Suleski J.E., Craig A.E., Kasprowicz A.E., Sanderford M., Li M., Stecher G., Hedges S.B. 2022. TimeTree 5: An expanded resource for species divergence times. Mol. Biol. Evol. 39, msac174. https://doi.org/10.1093/molbev/msac174

  66. Cummings M.P. 1994. Transmission patterns of eukaryotic transposable elements: Arguments for and against horizontal transfer. Trends Ecol. Evol. 9, 141–145. https://doi.org/10.1016/0169-5347(94)90179-1

    Article  CAS  PubMed  Google Scholar 

  67. Wallau G.L., Ortiz M.F., Loreto E.L. 2012. Horizontal transposon transfer in eukarya: Detection, bias, and perspectives. Genome Biol. Evol. 4, 689–699. https://doi.org/10.1093/gbe/evs055

    Article  CAS  PubMed  Google Scholar 

  68. Jangam D., Feschotte C., Betrán E. 2017. Transposable element domestication as an adaptation to evolutionary conflicts. Trends Genet. 33, 817–831. https://doi.org/10.1016/j.tig.2017.07.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hunter D.J., Williams K., Cartinhour S., Herrick G. 1989. Precise excision of telomere-bearing transposons during Oxytricha fallax macronuclear development. Genes Dev. 3, 2101–2112. https://doi.org/10.1101/gad.3.12b.210170

    Article  CAS  PubMed  Google Scholar 

  70. Chen X., Landweber L.F. 2016. Phylogenomic analysis reveals genome-wide purifying selection on TBE transposons in the ciliate Oxytricha. Mob. DNA. 7, 2. https://doi.org/10.1186/s13100-016-0057-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Jahn C.L., Doktor S.Z., Frels J.S., Jaraczewski J.W., Krikau M.F. 1993. Structures of the Euplotes crassus Tec1 and Tec2 elements: Identification of putative transposase coding regions. Gene. 133, 71–78. https://doi.org/10.1016/0378-1119(93)90226-s

    Article  CAS  PubMed  Google Scholar 

  72. Doak T.G., Witherspoon D.J., Jahn C.L., Herrick G. 2003. Selection on the genes of Euplotes crassus Tec1 and Tec2 transposons: Evolutionary appearance of a programmed frameshift in a Tec2 gene encoding a tyrosine family site-specific recombinase. Eukaryotic Cell. 2, 95–102. https://doi.org/10.1128/EC.2.1.95-102.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by a state contract “Functional, Metabolic, and Toxicological Aspects of the Life of Aquatic Organisms and Their Populations in Biotopes with Various Physicochemical Regimens” (no. 121041400077-1) with the Kovalevsky Institute of Biology of the Southern Seas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Puzakov.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving animals or human subjects performed by any of the authors.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest

Additional information

Translated by T. Tkacheva

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

The online version contains supplementary material available at https://doi.org/10.1134/S0026893324010114.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Puzakov, M.V., Puzakova, L.V. Structure and Evolution of DNA Transposons of the L31 Superfamily in Bivalves. Mol Biol 58, 43–61 (2024). https://doi.org/10.1134/S0026893324010114

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893324010114

Keywords:

Navigation