Skip to main content
Log in

Restraint Stress-Induced Expression of Fos and Several Related Genes in the Hypothalamus of Hypertensive ISIAH Rats

  • GENOMICS. TRANSCRIPTOMICS
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Stress can play a significant role in arterial hypertension and many other complications of cardiovascular diseases. Considerable attention is paid to the study of the molecular mechanisms involved in the body response to stressful influences, but there are still many blank spots in understanding the details. ISIAH rats model the stress-sensitive form of arterial hypertension. ISIAH rats are characterized by genetically determined enhanced activities of the hypothalamic–pituitary–adrenocortical and sympathetic–adrenomedullary systems, suggesting a functional state of increased stress reactivity. For the first time, the temporal expression patterns of Fos and several related genes were studied in the hypothalamus of adult male hypertensive ISIAH rats after a single exposure to restraint stress for 30, 60, or 120 min. Fos transcription was activated and peaked 1 h after the start of restraint stress. The time course of Fos activation coincided with that of blood pressure increase after stress. Activation of hypothalamic neurons also alters the transcription levels of several transcription factor genes (Jun, Nr4a3, Jdp2, and Ppargc1a), which are associated with the development of cardiovascular diseases. Because Fos induction is a marker of brain neuron activation, activation of hypothalamic neurons and an increase in blood pressure were concluded to accompany increased stress reactivity of the hypothalamic–pituitary–adrenocortical and sympathoadrenal systems in hypertensive ISIAH rats during short-term restraint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Markel A.L. 1992. Development of a new strain of rats with inherited stress-induced arterial hypertension. Genetic Hypertension. 218, 405–407.

    Google Scholar 

  2. Markel A.L., Maslova L.N., Shishkina G.T., Bulygina V.V., Machanova N.A., Jacobson G.S. 1999. Developmental influences on blood pressure regulation in ISIAH rats. Dev. Hypertensive Phenotype: Basic Clin. Stud. 19, 493–526.

    CAS  Google Scholar 

  3. Markel A.L., Redina O.E., Gilinsky M.A., Dymshits G.M., Kalashnikova E.V., Khvorostova Y.V., Fedoseeva L.A., Jacobson G.S. 2007. Neuroendocrine profiling in inherited stress-induced arterial hypertension rat strain with stress-sensitive arterial hypertension. J. Endocrinol. 195, 439–450.

    Article  CAS  PubMed  Google Scholar 

  4. Redina O.E., Smolenskaya S.E., Polityko Y.K., Ershov N.I., Gilinsky M.A., Markel A.L. 2021. Hypothalamic norepinephrine concentration and heart mass in hypertensive ISIAH rats are associated with a genetic locus on chromosome 18. J. Pers. Med. 11 (2), 67.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Klimov L.O., Ershov N.I., Efimov V.M., Markel A.L., Redina O.E. 2016. Genome-wide transcriptome analysis of hypothalamus in rats with inherited stress-induced arterial hypertension. BMC Genet. 17 (Suppl. 1), 13.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Fedoseeva L.A., Klimov L.O., Ershov N.I., Alexandrovich Y.V., Efimov V.M., Markel A.L., Redina O.E. 2016. Molecular determinants of the adrenal gland functioning related to stress-sensitive hypertension in ISIAH rats. BMC Genomics. 17 (Suppl. 14), 989.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Fedoseeva L.A., Ryazanova M.A., Ershov N.I., Markel A.L., Redina O.E. 2016. Comparative transcriptional profiling of renal cortex in rats with inherited stress-induced arterial hypertension and normotensive Wistar Albino Glaxo rats. BMC Genet. 17 (Suppl. 1), 12.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ryazanova M.A., Fedoseeva L.A., Ershov N.I., Efimov V.M., Markel A.L., Redina O.E. 2016. The gene-expression profile of renal medulla in ISIAH rats with inherited stress-induced arterial hypertension. BMC Genet. 17 (Suppl. 3), 151.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Fedoseeva L.A., Klimov L.O., Ershov N.I., Efimov V.M., Markel A.L., Orlov Y.L., Redina O.E. 2019. The differences in brain stem transcriptional profiling in hypertensive ISIAH and normotensive WAG rats. BMC Genomics. 20, 297.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Pylnik T.O., Pletneva L.S., Redina O.E., Smolenskaya S.E., Markel A.L., Ivanova L.N. 2011. The effect of emotional stress on the expression of the alpha-ENaC gene mRNA in the kidney of hypertensive ISIAH rats. Dokl. Biol. Sci. 439, 201–203.

    Article  CAS  PubMed  Google Scholar 

  11. Abramova T.O., Redina O.E., Smolenskaya S.E., Markel A.L. 2013. Elevated expression of the Ephx2 mRNA in the kidney of hypertensive ISIAH rats. Mol. Biol. (Moscow). 47, 821–826. https://doi.org/10.1134/S0026893313060022

    Article  CAS  Google Scholar 

  12. Abramova T.O., Smolenskaya S.E., Antonov E.V., Redina O.E., Markel A.L. 2016. Expression of catechol-O-methyltransferase (Comt), mineralocorticoid receptor (Mlr), and epithelial sodium channel (ENAC. genes in kidneys of hypertensive ISIAH rats at rest and during response to stress. Russ. J. Genet. 52, 180–187.

    Article  CAS  Google Scholar 

  13. Senba E., Ueyama T. 1997. Stress-induced expression of immediate early genes in the brain and peripheral organs of the rat. Neurosci. Res. 29, 183–207.

    Article  CAS  PubMed  Google Scholar 

  14. Girotti M., Weinberg M.S., Spencer R.L. 2007. Differential responses of hypothalamus-pituitary-adrenal axis immediate early genes to corticosterone and circadian drive. Endocrinology. 148, 2542–2552.

    Article  CAS  PubMed  Google Scholar 

  15. Mansi J.A., Rivest S., Drolet G. 1998. Effect of immobilization stress on transcriptional activity of inducible immediate-early genes, corticotropin-releasing factor, its type 1 receptor, and enkephalin in the hypothalamus of borderline hypertensive rats. J. Neurochem. 70, 1556–1566.

    Article  CAS  PubMed  Google Scholar 

  16. Kovacs K.J. 2008. Measurement of immediate-early gene activation—c-fos and beyond. J. Neuroendocrinol. 20, 665–672.

    Article  CAS  PubMed  Google Scholar 

  17. Guez-Barber D., Fanous S., Golden S.A., Schrama R., Koya E., Stern A.L., Bossert J.M., Harvey B.K., Picciotto M.R., Hope B.T. 2011. FACS identifies unique cocaine-induced gene regulation in selectively activated adult striatal neurons. J. Neurosci. 31, 4251–4259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Okuno H. 2011. Regulation and function of immediate-early genes in the brain: Beyond neuronal activity markers. Neurosci. Res. 69, 175–186.

    Article  CAS  PubMed  Google Scholar 

  19. Melia K.R., Ryabinin A.E., Schroeder R., Bloom F.E., Wilson M.C. 1994. Induction and habituation of immediate early gene expression in rat brain by acute and repeated restraint stress. J. Neurosci. 14, 5929–5938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Girotti M., Pace T.W., Gaylord R.I., Rubin B.A., Herman J.P., Spencer R.L. 2006. Habituation to repeated restraint stress is associated with lack of stress-induced c-fos expression in primary sensory processing areas of the rat brain. Neuroscience. 138, 1067–1081.

    Article  CAS  PubMed  Google Scholar 

  21. Foletta V.C., Segal D.H., Cohen D.R. 1998. Transcriptional regulation in the immune system: All roads lead to AP-1. J. Leukoc. Biol. 63, 139–152.

    Article  CAS  PubMed  Google Scholar 

  22. Aronheim A., Zandi E., Hennemann H., Elledge S.J., Karin M. 1997. Isolation of an AP-1 repressor by a novel method for detecting protein−protein interactions. Mol. Cell. Biol. 17, 3094–3102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Katz S., Heinrich R., Aronheim A. 2001. The AP-1 repressor, JDP2, is a bona fide substrate for the c-Jun N-terminal kinase. FEBS Lett. 506, 196–200.

    Article  CAS  PubMed  Google Scholar 

  24. Odagiu L., Boulet S., Maurice De Sousa D., Daudelin J.F., Nicolas S., Labrecque N. 2020. Early programming of CD8(+). T cell response by the orphan nuclear receptor NR4A3. Proc. Natl. Acad. Sci. U. S. A. 117, 24392–24402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Baresic M., Salatino S., Kupr B., van Nimwegen E., Handschin C. 2014. Transcriptional network analysis in muscle reveals AP-1 as a partner of PGC-1alpha in the regulation of the hypoxic gene program. Mol. Cell. Biol. 34, 2996–3012.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wenz T. 2013. Regulation of mitochondrial biogenesis and PGC-1alpha under cellular stress. Mitochondrion. 13, 134–142.

    Article  CAS  PubMed  Google Scholar 

  27. McMeekin L.J., Joyce K.L., Jenkins L.M., Bohannon B.M., Patel K.D., Bohannon A.S., Patel A., Fox S.N., Simmons M.S., Day J.J., Kralli A., Crossman D.K., Cowell R.M. 2021. Estrogen-related receptor alpha (ERRalpha). is required for PGC-1alpha-dependent gene expression in the mouse brain. Neuroscience. 479, 70–90.

    Article  CAS  PubMed  Google Scholar 

  28. Hausl A.S., Brix L.M., Hartmann J., Pohlmann M.L., Lopez J.P., Menegaz D., Brivio E., Engelhardt C., Roeh S., Bajaj T., Rudolph L., Stoffel R., Hafner K., Goss H.M., Reul J., Deussing J.M., Eder M., Ressler K.J., Gassen N.C., Chen A., Schmidt M.V. 2021. The co-chaperone Fkbp5 shapes the acute stress response in the paraventricular nucleus of the hypothalamus of male mice. Mol. Psychiatry. 26, 3060–3076.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ginzinger D.G. 2002. Gene quantification using real-time quantitative PCR: An emerging technology hits the mainstream. Exp. Hematol. 30, 503–512.

    Article  CAS  PubMed  Google Scholar 

  30. Imaki T., Shibasaki T., Chikada N., Harada S., Naruse M., Demura H. 1996. Different expression of immediate-early genes in the rat paraventricular nucleus induced by stress: Relation to corticotropin-releasing factor gene transcription. Endocr. J. 43, 629–638.

    Article  CAS  PubMed  Google Scholar 

  31. Imaki T., Naruse M., Harada S., Chikada N., Nakajima K., Yoshimoto T., Demura H. 1998. Stress-induced changes of gene expression in the paraventricular nucleus are enhanced in spontaneously hypertensive rats. J. Neuroendocrinol. 10, 635–643.

    Article  CAS  PubMed  Google Scholar 

  32. Budzikowski A.S., Vahid-Ansari F., Leenen F.H. 1998. Chronic activation of brain areas by high-sodium diet in Dahl salt-sensitive rats. Am. J. Physiol. 274, H2046–2052.

    CAS  PubMed  Google Scholar 

  33. Rivest S., Laflamme N. 1995. Neuronal activity and neuropeptide gene transcription in the brains of immune-challenged rats. J. Neuroendocrinol. 7, 501–525.

    Article  CAS  PubMed  Google Scholar 

  34. Cullinan W.E., Herman J.P., Battaglia D.F., Akil H., Watson S.J. 1995. Pattern and time course of immediate early gene expression in rat brain following acute stress. Neuroscience. 64, 477–505.

    Article  CAS  PubMed  Google Scholar 

  35. Crane J.W., French K.R., Buller K.M. 2005. Patterns of neuronal activation in the rat brain and spinal cord in response to increasing durations of restraint stress. Stress. 8, 199–211.

    Article  PubMed  Google Scholar 

  36. Karin M., Chang L. 2001. AP-1–glucocorticoid receptor crosstalk taken to a higher level. J. Endocrinol. 169, 447–451.

    Article  CAS  PubMed  Google Scholar 

  37. Itoi K., Motoike I., Liu Y., Clokie S., Iwasaki Y., Uchida K., Sato T., Aguilera G. 2019. Genome-wide analysis of glucocorticoid-responsive transcripts in the hypothalamic paraventricular region of male rats. Endocrinology. 160, 38–54.

    Article  CAS  PubMed  Google Scholar 

  38. Kvetnansky R., Sabban E.L., Palkovits M. 2009. Catecholaminergic systems in stress: Structural and molecular genetic approaches. Physiol. Rev. 89, 535–606.

    Article  CAS  PubMed  Google Scholar 

  39. Daftary S.S., Boudaba C., Tasker J.G. 2000. Noradrenergic regulation of parvocellular neurons in the rat hypothalamic paraventricular nucleus. Neuroscience. 96, 743–751.

    Article  CAS  PubMed  Google Scholar 

  40. Perez D.M. 2020. Alpha(1)-adrenergic receptors in neurotransmission, synaptic plasticity, and cognition. Front. Pharmacol. 11, 581098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Morris D.P., Lei B., Longo L.D., Bomsztyk K., Schwinn D.A., Michelotti G.A. 2015. Temporal dissection of rate limiting transcriptional events using Pol II ChIP and RNA analysis of adrenergic stress gene activation. PLoS One. 10, e0134442.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Ang S.A., Harrison J.L., Powers-Martin K., Reddrop C., McKitrick D.J., Holobotovskyy V.V., Arnolda L.F., Phillips J.K. 2007. C-Fos activation in renal hypertension. Hypertension. 49, 1468–1468.

    Google Scholar 

  43. Maiti P., Singh S.B., Sharma A.K., Muthuraju S., Banerjee P.K., Ilavazhagan G. 2006. Hypobaric hypoxia induces oxidative stress in rat brain. Neurochem. Int. 49, 709–716.

    Article  CAS  PubMed  Google Scholar 

  44. Zafir A., Banu N. 2009. Induction of oxidative stress by restraint stress and corticosterone treatments in rats. Indian J. Biochem. Biophys. 46, 53–58.

    CAS  PubMed  Google Scholar 

  45. Dal Santo G., Conterato G.M., Barcellos L.J., Rosemberg D.B., Piato A.L. 2014. Acute restraint stress induces an imbalance in the oxidative status of the zebrafish brain. Neurosci. Lett. 558, 103–108.

    Article  CAS  PubMed  Google Scholar 

  46. Liu D., Ma Z., Xu L., Zhang X., Qiao S., Yuan J. 2019. PGC1alpha activation by pterostilbene ameliorates acute doxorubicin cardiotoxicity by reducing oxidative stress via enhancing AMPK and SIRT1 cascades. Aging (Albany NY). 11, 10061–10073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhao X., Liu F., Jin H., Li R., Wang Y., Zhang W., Wang H., Chen W. 2017. Involvement of PKCalpha and ERK1/2 signaling pathways in EGCG’s protection against stress-induced neural injuries in Wistar rats. Neuroscience. 346, 226–237.

    Article  CAS  PubMed  Google Scholar 

  48. Pang D., Yang C., Luo Q., Li C., Liu W., Li L., Zou Y., Feng B., Chen Z., Huang C. 2020. Soy isoflavones improve the oxidative stress induced hypothalamic inflammation and apoptosis in high fat diet-induced obese male mice through PGC1-alpha pathway. Aging (Albany NY). 12, 8710–8727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lucas E.K., Dougherty S.E., McMeekin L.J., Reid C.S., Dobrunz L.E., West A.B., Hablitz J.J., Cowell R.M. 2014. PGC-1alpha provides a transcriptional framework for synchronous neurotransmitter release from parvalbumin-positive interneurons. J. Neurosci. 34, 14375–14387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lin J., Wu P.H., Tarr P.T., Lindenberg K.S., St-Pierre J., Zhang C.Y., Mootha V.K., Jager S., Vianna C.R., Reznick R.M., Cui L., Manieri M., Donovan M.X., Wu Z., Cooper M.P., Fan M.C., Rohas L.M., Zavacki A.M., Cinti S., Shulman G.I., Lowell B.B., Krainc D., Spiegelman B.M. 2004. Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1alpha null mice. Cell. 119, 121–135.

    Article  CAS  PubMed  Google Scholar 

  51. Fan W., Evans R. 2015. PPARs and ERRs: Molecular mediators of mitochondrial metabolism. Curr. Opin. Cell. Biol. 33, 49–54.

    Article  CAS  PubMed  Google Scholar 

  52. Zhao Q., Zhang J., Wang H. 2015. PGC-1alpha overexpression suppresses blood pressure elevation in DOCA-salt hypertensive mice. Biosci. Rep. 35, e00217.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to staff of the conventional breeding facility of the Center of Genetic Resources of Laboratory Animals (Institute of Cytology and Genetics, Novosibirsk, Russia) for rearing experimental rats for Russian governmental project no. FWNR-2022-0008 and the Joint Center of Genome Studies (Institute of Cytology and Genetics, project no. FWNR-2022-0017) for the opportunity to use their equipment for qualitative and quantitative nucleic acid testing.

Funding

This work was supported by the Russian Science Foundation (project no. 22-14-00082).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. V. Makovka.

Ethics declarations

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

All procedures were performed in compliance with international rules for studies with animals. The study protocol was approved by the Bioethical Council of the Federal Research Center Institute of Cytology and Genetics SB RAS (Novosibirsk, Russia), Protocol no. 115 dated December 20, 2021.

Additional information

Translated by T. Tkacheva

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abbreviations: ISIAH, inherited stress-induced arterial hypertension; WAG, Wistar Albino Glaxo; BP, blood pressure; qPCR, quantitative (real-time) polymerase chain reaction; ACTH, adrenocorticotropic hormone.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makovka, Y.V., Fedoseeva, L.A., Oshchepkov, D.Y. et al. Restraint Stress-Induced Expression of Fos and Several Related Genes in the Hypothalamus of Hypertensive ISIAH Rats. Mol Biol 58, 62–70 (2024). https://doi.org/10.1134/S0026893324010072

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893324010072

Keywords:

Navigation