Skip to main content
Log in

Stochastic Packaging of Cas Proteins into Exosomes

  • CELL MOLECULAR BIOLOGY
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract—CRISPR/Cas systems are perspective molecular tools for targeted manipulation with genetic materials, such as gene editing, regulation of gene transcription, modification of epigenome etc. While CRISPR/Cas systems proved to be highly effective for correcting genetic disorders and treating infectious diseases and cancers in experimental settings, clinical translation of these results is hampered by the lack of efficient CRISPR/Cas delivery vehicles. Modern synthetic nanovehicles based on organic and inorganic polymers have many disadvantages, including toxicity issues, the lack of targeted delivery, and complex and expensive production pipelines. In turn, exosomes are secreted biological nanoparticles that exhibit high biocompatibility, physico-chemical stability, and the ability to cross biological barriers. Early clinical trials found no toxicity associated with exosome injections. In the recent years, exosomes have been considered as perspective delivery vehicles for CRISPR/Cas systems in vivo. The aim of this study was to analyze the efficacy of CRISPR/Cas stochastic packaging into exosomes for several human cell lines. Here, we show that Cas9 protein is effectively localized into the compartment of intracellular exosome biogenesis, but stochastic packaging of Cas9 into exosomes turns to be very low (~1%). As such, stochastic packaging of Cas9 protein is very ineffective and cannot be used for gene editing purposes. Developing novel tools and technologies for loading CRISPR/Cas systems into exosomes is needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Bannikov A.V., Lavrov A.V. 2017. CRISPR/Cas9, the king of genome editing tools. Mol. Biol. (Moscow). 51, 514–525. https://doi.org/10.1134/S0026893317040033

    Article  CAS  Google Scholar 

  2. Wiedenheft B., Sternberg S.H., Doudna J.A. 2012. RNA-guided genetic silencing systems in bacteria and archaea. Nature. 482, 331–338.

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Ran F.A., Hsu P.D., Wright J., Agarwala V., Scott D.A., Zhang F. 2013. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 8, 2281–2308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kostyushev D., Brezgin S., Kostyusheva A., Zarifyan D., Goptar I., Chulanov V. 2019. Orthologous CRISPR/Cas9 systems for specific and efficient degradation of covalently closed circular DNA of hepatitis B virus. Cell. Mol. Life Sci. 76, 1779–1794.

    Article  CAS  PubMed  Google Scholar 

  5. Brezgin S., Kostyusheva A., Kostyushev D., Chulanov V. 2019. Dead Cas systems: Types, principles, and applications. Int. J. Mol. Sci. 20 (23), 6041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kostyusheva A., Brezgin S., Babin Y., Vasilyeva I., Glebe D., Kostyushev D., Chulanov V. 2022. CRIS-PR−Cas systems for diagnosing infectious diseases. Methods. 203, 431–446.

    Article  CAS  PubMed  Google Scholar 

  7. Chen S., Lee B., Lee A.Y., Modzelewski A.J., He L. 2016. Highly efficient mouse genome editing by CR-ISPR ribonucleoprotein electroporation of zygotes. J. Biol. Chem. 291 (28), 14457–14467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bharathkumar N., Sunil A., Meera P., Aksah S., Kannan M., Saravanan K.M., Anand T. 2022. CRI-SPR/Cas‑based modifications for therapeutic applications: A review. Mol. Biotechnol. 64, 355–372.

    Article  CAS  PubMed  Google Scholar 

  9. Brezgin S., Kostyusheva A., Ponomareva N., Volia V., Goptar I., Nikiforova A., Shilovskiy I., Smirnov V., Kostyushev D., Chulanov V. 2020. Clearing of foreign episomal DNA from human cells by CRISPRa-mediated activation of cytidine deaminases. Int. J. Mol. Sci. 21, 1–17.

    Article  Google Scholar 

  10. Kostyushev D., Brezgin S., Kostyusheva A., Ponomareva N., Bayurova E., Zakirova N., Kondra-shova A., Goptar I., Nikiforova A., Sudina A., Babin Y., Gordeychuk I., Lukashev A., Zamyatnin A., Ivanov A., Chulanov V. 2023. Transient and tunable CRISPRa regulation of APOBEC/AID genes for targeting hepatitis B virus. Mol. Ther. Nucl. Acids. 32, 478–493.

    Article  CAS  Google Scholar 

  11. Kostyushev D., Kostyusheva A., Brezgin S., Ponomareva N., Zakirova N.F., Egorshina A., Yanvarev D.V., Bayurova E., Sudina A., Goptar I., Nikiforova A., Dunaeva E., Lisitsa T., Abramov I., Frolova A., Lukashev A., Gordeychuk I., Zamyatnin A.A., Ivanov A., Chulanov V. 2023. Depleting hepatitis B virus relaxed circular DNA is necessary for resolution of infection by CRISPR-Cas9. Mol. Ther. Nucl. Acids, 31, 482–493.

    Article  CAS  Google Scholar 

  12. Kostyusheva A.P., Kostyushev D.S., Brezgin S.A., Zarifyan D.N., Volchkova E.V., Chulanov V.P. 2019. Small molecular inhibitors of DNA double strand break repair pathways increase the ANTI-HBV activity of CRISPR/Cas9. Mol. Biol. (Moscow). 53, 274–285. https://doi.org/10.1134/S0026893319010072

    Article  CAS  Google Scholar 

  13. Kostyusheva A.P., Brezgin S.A., Ponomareva N.I., Goptar I.A., Nikiforova A.V., Gegechkori V.I., Poluektova V.B., Turkadze K.A., Sudina A.E., Chulanov V.P., Kostyushev D.S. 2022. Antiviral activity of CRISPR/Cas9 ribonucleoprotein complexes on a hepatitis B virus model in vivo. Mol. Biol. (Moscow). 56, 816‒822. https://doi.org/10.1134/S0026893322060097

    Article  CAS  Google Scholar 

  14. Sharma G., Sharma A.R., Bhattacharya M., Lee S., Chakraborty C. 2021. CRISPR-Cas9: A preclinical and clinical perspective for the treatment of human diseases. Mol. Ther. 29 (2), 571–586.

    Article  CAS  PubMed  Google Scholar 

  15. Rafii S., Tashkandi E., Bukhari N., Al-shamsi H.O. 2022. Current status of CRISPR/Cas9 application in clinical cancer research: Opportunities and challenges. Cancers (Basel). 14 (4), 1–14.

    Article  Google Scholar 

  16. Kostyushev D., Kostyusheva A., Brezgin S., Smirnov V., Volchkova E., Lukashev A., Chulanov V. 2020. Gene editing by extracellular vesicles. Int. J. Mol. Sci. 21, 1–34.

    Article  Google Scholar 

  17. Li A., Lee C.M., Hurley A.E., Jarrett K.E., De Giorgi M., Lu W., Balderrama K.S., Doerfler A.M., Deshmukh H., Ray A., Bao G., Lagor W.R. 2019. A self-deleting AAV-CRISPR system for in vivo genome editing. Mol. Ther. Methods Clin. Dev. 12, 111–122.

    Article  CAS  PubMed  Google Scholar 

  18. Scott T., Moyo B., Nicholson S., Maepa M.B., Watashi K., Ely A., Weinberg M.S., Arbuthnot P. 2017. SsAAVs containing cassettes encoding SaCas9 and guides targeting hepatitis B virus inactivate replication of the virus in cultured cells. Sci. Rep. 7 (1), 7401.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  19. Bulcha J.T., Wang Y., Ma H., Tai P.W.L., Gao G. 2021. Viral vector platforms within the gene therapy landscape. Signal Transduct. Target. Ther. 6 (1), 53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jiang C., Mei M., Li B., Zhu X., Zu W., Tian Y., Wang Q., Guo Y., Dong Y., Tan X. 2017. A non-viral CRISPR/Cas9 delivery system for therapeutically targeting HBV DNA and pcsk9 in vivo. Cell. Res. 27 (3), 440–443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Vader P., Mol E.A., Pasterkamp G., Schiffelers R.M. 2016. Extracellular vesicles for drug delivery. Adv. Drug Delivery Rev. 106, 148–156.

    Article  CAS  Google Scholar 

  22. Doyle L.M., Wang M.Z. 2019. Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells. 8 (7), 727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Phillips W., Willms E., Hill A.F. 2021. Understanding extracellular vesicle and nanoparticle heterogeneity: Novel methods and considerations. Proteomics. 21 (13–14), e2000118.

    Article  PubMed  Google Scholar 

  24. Alvarez-erviti L., Seow Y., Yin H., Betts C., Lakhal S., Wood M.J.A. 2011. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat. Biotechnol. 29 (4), 341–345.

    Article  CAS  PubMed  Google Scholar 

  25. Yang B., Chen Y., Shi J. 2019. Exosome biochemistry and advanced nanotechnology for next-generation theranostic platforms. Adv. Mater. 31 (2), e1802896.

    Article  PubMed  Google Scholar 

  26. Kim M.S., Haney M.J., Zhao Y., Mahajan V., Deygen I., Klyachko N.L., Inskoe E., Piroyan A., Sokolsky M., Okolie O., Hingtgen S.D., Kabanov A.V., Batrakova E.V. 2016. Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells. Nanomedicine. 12 (3), 655–664.

    Article  CAS  PubMed  Google Scholar 

  27. Yuan D., Zhao Y., Banks W.A., Bullock K.M., Haney M., Batrakova E., Kabanov A.V. 2017. Macrophage exosomes as natural nanocarriers for protein delivery to inflamed brain. Biomaterials. 142, 1–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kim H., Yun N., Mun D., Kang J.Y., Lee S.H., Park H., Park H., Joung B. 2018. Cardiac-specific delivery by cardiac tissue-targeting peptide-expressing exosomes. Biochem. Biophys. Res. Commun. 499 (4), 803–808.

    Article  CAS  PubMed  Google Scholar 

  29. Brezgin S., Parodi A., Kostyusheva A., Ponomar-va N., Lukashev A., Sokolova D., Pokrovsky V.S., Slatinskaya O., Maksimov G., Zamyatnin A.A. Jr., Chulanov V., Kostyushev D. 2023. Technological aspects of manufacturing and analytical control of biological nanoparticles. Biotechnol. Adv. 64, 108122.

    Article  CAS  PubMed  Google Scholar 

  30. Chen R., Huang H., Liu H., Xi J., Ning J., Zeng W., Shen C., Zhang T., Yu G., Xu Q., Chen X., Wang J., Lu F. 2019. Friend or foe? Evidence indicates endogenous exosomes can deliver functional gRNA and Cas9 protein. Small. 15 (38), e1902686.

    Article  PubMed  Google Scholar 

  31. Dai J., Su Y., Zhong S., Cong L., Liu B., Yang J., Tao Y., He Z., Chen C., Jiang Y. 2020. Exosomes: Key players in cancer and potential therapeutic strategy. Signal. Transduct. Target. Ther. 5 (1), 145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kornilov R., Puhka M., Mannerström B., Hiidenmaa H., Peltoniemi H., Siljander P., Seppänen-Kaijansinkko R., Kaur S. 2018. Efficient ultrafiltration-based protocol to deplete extracellular vesicles from fetal bovine serum. J. Extracell. Vesicles. 7 (1), 1422674.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Hessvik N.P., Llorente A. 2018. Current knowledge on exosome biogenesis and release. Cell. Mol. Life Sci. 75 (2), 193–208.

    Article  CAS  PubMed  Google Scholar 

  34. Ostrowski M., Carmo N.B., Krumeich S., Fanget I., Raposo G., Savina A., Moita C.F., Schauer K., Hume A.N., Freitas R.P., Goud B., Benaroch P., Hacohen N., Fukuda M., Desnos C., Seabra M.C., Darchen F., Amigorena S., Moita L.F., Thery C. 2009. Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat. Cell Biol. 12 (1), 19–30.

    Article  PubMed  Google Scholar 

  35. Gurung S., Perocheau D., Touramanidou L., Baruteau J. 2021. The exosome journey: From biogenesis to uptake and intracellular signalling. Cell Commun. Signal. 19 (1), 47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Manders E.M., Verbeek F., Aten J. 1992. Measurement of co-localization of objects in dual colour confocal images. J. Microsc. 169, 375–382.

    Article  Google Scholar 

  37. Luo T., Mitra S., McBride J.W. 2018. Ehrlichia chaffeensis TRP75 interacts with host cell targets. mSphere. 3 (2), e00147-18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Brezgin S., Kostyusheva A., Ponomareva N., Bayurova E., Kondrashova A., Frolova A., Slatinskaya O., Fatkhutdinova L., Maksimov G., Zyuzin M., Gordeychuk I., Lukashev A., Makarov S., Ivanov A., Zamyatnin A.A., Jr., Chulanov V., Parodi A., Kostyushev D. 2023. Hydroxychloroquine enhances cytotoxic properties of extracellular vesicles and extracellular vesicle—mimetic nanovesicles loaded with chemotherapeutics. Pharmaceutics. 15 (2), 534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Théry C., Witwer K.W., Aikawa E., Alcaraz M. J., Anderson J.D., Andriantsitohaina R., Antoniou A., Arab T., Archer F., Atkin-Smith G.K. 2018. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the International Society for extracellular vesicles and update of the MISEV2014 guidelines. J. Extracell. Vesicles. 7 (1), 1535750.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Witwer K.W., Goberdhan D.C., O’Driscoll L., Théry C., Welsh J.A., Blenkiron C., Buzás E.I., Di Vizio D., Erdbrügger U., Falcón-Pérez J.M., Fu Q.L, Hill A.F., Lenassi M., Lötvall J., Nieuwland R., Ochiya T., Rome S., Sahoo S., Zheng L. 2021. Updating MISEV: Evolving the minimal requirements for studies of extracellular vesicles. J. Extracell. Vesicles. 10 (14), e12182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gee P., Lung M.S.Y., Okuzaki Y., Sasakawa N., Iguchi T., Makita Y., Hozumi H., Miura Y., Yang L.F., Iwasaki M., Wang X.H., Waller M.A., Shirai N., Abe Y.O., Fujita Y., Watanabe K., Kagita A., Iwabuchi K.A., Yasuda M., Xu H., Noda T., Komano J., Sakurai H., Inukai N., Hotta A. 2020. Extracellular nanovesicles for packaging of CRISPR-Cas9 protein and sgRNA to induce therapeutic exon skipping. Nat. Commun. 11 (1), 1334.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  42. Liang X., Gupta D., Xie J., Wonterghem E., Van Hoecke L., Van Hean J., Niu Z., Wiklander O.P.B., Zheng W., Wiklander R.J.,, Rui He, Doste R. Mamand, Bost J., Zhou G., Zhou H., Roudi S., Zickler A.M., Görgens A., Hagey D.W., de Jong O.G., Uy A. G., Zong Y., Mäger Imre., Perez C.M., Roberts T.C., Vader P., Vandenbroucke R.E., Nordin J.Z., EL-Andaloussiet S. 2023. Multimodal engineering of extracellular vesicles for efficient intracellular protein delivery. bioRxiv. 2023.04.30.535834. https://doi.org/10.1101/2023.04.30.535834

  43. Li T., Zhang L., Lu T., Zhu T., Feng C., Gao N., Liu F., Yu J., Chen K., Zhong J., Tang Q., Zhang Q., Deng X., Ren J., Zeng J., Zhou H., Zhu J. 2023. Engineered extracellular vesicle-delivered CRISPR/CasRx as a novel RNA editing tool. Adv. Sci. (Weinh). 10 (10), e2206517.

    Article  Google Scholar 

  44. Patel S., Kim J., Herrera M., Mukherjee A., Kabanov A.V., Sahay G. 2019. Brief update on endocytosis of nanomedicines. Adv. Drug Delivery Rev. 144, 90–111.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by a grant from the Russian Science Foundation (No. 20-15-00373). Research on transfection of human cell lines was carried out within the framework of the State assignment of the Ministry of Science and Higher Education of the Russian Federation No. 075-01551-23-00 (FSSF-2023-0006) (V.S. Pokrovsky).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. I. Ponomareva.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ponomareva, N.I., Brezgin, S.A., Kostyusheva, A.P. et al. Stochastic Packaging of Cas Proteins into Exosomes. Mol Biol 58, 147–156 (2024). https://doi.org/10.1134/S0026893324010102

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893324010102

Keywords:

Navigation