Skip to main content
Log in

Genome Stability of Bacillus velezensis after Two-Year Exposure in Open Space

  • GENOMICS. TRANSCRIPTOMICS
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract—Spore-forming bacteria have a unique resistance to negative environmental conditions, including aggressive space factors, and are an excellent model for studying adaptation mechanisms and survival strategies at the molecular level. The study analyzed the genome of Bacillus velezensis, which remained viable after a 2-year exposure in outer space on the outer surface of the ISS as part of the Test space experiment. A comparative analysis of the draft genomes of the exhibit strain and the ground control did not reveal significant changes; the average nucleotide identity was 99.98%, which indicates the ability of microorganisms to maintain genome stability in space conditions, due to both increased stress resistance of bacterial spores and efficient operation of the system of repair of accumulated changes. The study of a single nucleotide polymorphism in the genome of B. velezensis revealed nine point substitutions, three of which are in intergenic regions, six in protein-coding genes, three of them are missense mutations, two nucleotide deletions leading to a shift in the reading frame, and one synonymous substitution. The profiles of the housekeeping genes were determined during MLST typing and it was found that the allelic profiles obtained for B. velezensis T15.2 and 924 strains do not correspond to any of the previously described sequence types.The presented results indicate the ability of B. velezensis bacteria to maintain the viability of spores and the integrity of the genome for a long time under extreme conditions of outer space, which is important for the problem of planetary protection, as well as the potential possibility of performing biotechnological processes based on B. velezensis during space exploration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Horneck G., Klaus D. M., Rocco L. 2010. Space Microbiology. Microbiol. Mol. Biol. Rev. 74, 121–156.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  2. Horneck G., Bucker H., Reitz G. 1994. Long-term survival of bacteria spores in space. Adv. Space Res. 14, 41–45.

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Rabbow E., Rettberg P., Barczyk S., Bohmeier M., Parpart A., Panitz C., Horneck G., Burfeindt J., Molter F., Jaramillo F. 2015. The astrobiological mission EXPOSE-R on board of the International Space Station. Int. J. Astrobiol. 14, 3–16.

    Article  ADS  Google Scholar 

  4. Baranov I.M., Novikova N.D., Polikarpov N.A., Sychev V.N., Levinskikh M.A., Alekseev V.R., Okuda T., Sugimoto M., Gusev O.A., Grigoriev A.I. 2009. Biorisk experiment: 13-month exposition of resting forms of organisms on the outer side of the Russian Segment of the International Space Station (preliminary results). Dokl. Biochem. Biophys. 426, 206–209.

    Google Scholar 

  5. de La Torre R., Sancho L.G., Horneck G., de los Ríos A., Wierzchos J., Olsson-Francis K., Cockell C.S., Rettberg P., Berger T., de Vera J.P.P., Ott S., Frías J.M., Melendi P.G., Lucas M.M., Reina M., Pintado A., Demets R. 2010. Survival of lichens and bacteria exposed to outer space conditions—results of the Lithopanspermia experiments. Icarus. 208 (2), 735–748.

    Article  ADS  CAS  Google Scholar 

  6. Ott E., Kawaguchi Y., Kölbl D., Rabbow E., Rettberg P., Mora M., Moissl-Eichinger C., Weckwerth W., Yamagishi A., Milojevic T. 2020. Molecular repertoire of Deinococcus radiodurans after 1 year of exposure outside the International Space Station within the Tanpopo mission. Microbiome. 8 (1), 150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nicholson W.L., Moeller R., Horneck G. 2012. Transcriptomic responses of germinating Bacillus subtilis spores exposed to 1.5 years of space and simulated martian conditions on the EXPOSE-E experiment PR-OTECT. Astrobiology. 12 (5), 469–486.

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Vaishampayan P.A., Rabbow E., Horneck G., Venkateswaran K.J. 2012. Survival of Bacillus pumilus spores for a prolonged period of time in real space conditions. Astrobiology. 12 (5), 487–497.

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Mastroleo F., Van Houdt R., Leroy B., Benotmane M.A., Janssen A., Mergeay M., Vanhavere F., Hendrickx L., Wattiez R., Leys N. 2009. Experimental design and environmental parameters affect Rhodospirillum rubrum S1H response to space flight. ISME J. 3 (12), 1402–1419.

    Article  CAS  PubMed  Google Scholar 

  10. Wilson J.W., Ott C.M., Honer zu Bentrup K., Ramamurthy R., Quick L., Porwollik S., Cheng P., McClelland M., Tsaprailis G., Radabaugh T., Hunt A., Fernandez D., Richter E., Shah M., Kilcoyne M., Joshi L., Nelman-Gonzalez M., Hing S., Parra M., Dumars P., Norwood K., Bober R., Devich, J. Ruggles A., Goulart C., Rupert M., Stodieck L., Stafford P., Catella L., Schurr M.J., Buchanan K., Morici L., McCracken J., Allen P., Baker-Coleman C., Hammond T., Vogel J., Nelson R., Pierson D.L., Stefanyshyn-Piper H.M., Nickerson C.A. 2007. Space flight alters bacterial gene expression and virulence and reveals a role for global regulator Hfq. Proc. Natl. Acad. Sci. USA. 104 (41), 16299–16304.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Klaus D.M., Howard H.N. 2006. Antibiotic efficacy and microbial virulence during space flight. Trends Biotechnol. 24, 131–136.

    Article  CAS  PubMed  Google Scholar 

  12. Su L., Chang D., Liu C. 2013. The development of space microbiology in the future: The value and significance of space microbiology research. Future Microbiol. 8, 5–8.

    Article  PubMed  Google Scholar 

  13. Oshurkova V.I., Deshevaya E.A., Suzina N.E., Shubralova E.V., Shcherbakova V.A. 2021. Methanogenic archaea in space conditions. Aerospace Environ. Med. 55 (1), 63‒69.

    Article  Google Scholar 

  14. Deshevaya E.A., Shubralova E.V., Fialkina S.V., Guridov A.A., Novikova N.D., Tsygankov O.S., Lianko P.S., Orlov O.I., Morzunov S.P., Rizvanov A.A., Nikolaeva I.V. 2020. Microbiological investigation of the space dust collected from the external surfaces of the international space station. BioNanoScience. 10, 81–88.

    Article  Google Scholar 

  15. MagocT., Salzberg S. 2011. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics. 27 (21), 2957–2963.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Aziz R.K., Bartels D., Best A.A., DeJongh M., Disz T., Edwards R.A., Formsma K., Gerdes S., Glass E.M., Kubal M., Meyer F., Olsen G.J., Olson R., Osterman A.L., Overbeek R.A., McNeil L.K., Paarmann D., Paczian T., Parrello B., Pusch G.D., Zagnitko O. 2008. The RAST Server: Rapid annotations using subsystems technology. BMC Genomics. 9, 75.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Langdon W.B. 2015. Performance of genetic programming optimised Bowtie2 on genome comparison and analytic testing (GCAT) benchmarks. BioData Min. 8, 1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bankevich A., Nurk S., Antipov D., Gurevich A.A., Dvorkin M., Kulikov A.S., Lesin V.M., Nikolenko S.I., Pham S., Prjibelski A.D., Pyshkin A.V., Sirotkin A.V., Vyahhi N., Tesler G., Alekseyev M.A., Pevzner P.A. 2012. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19 (5), 455–477.

    Article  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liang Q., Liu C., Xu R., Song M., Zhou Z., Li H., Dai W., Yang M., Yu Y., Chen H. 2021. fIDBAC: A platform for fast bacterial genome identification and typing. Front. Microbiol. 18, 723577.

    Article  Google Scholar 

  20. Saitou N., Nei M. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425.

    CAS  PubMed  Google Scholar 

  21. Tamura K., Stecher G., Kumar S. 2021. MEGA 11: Molecular Evolutionary Genetics Analysis version 11. Mol. Biol. Evol. 25, 3022–3027.

    Article  Google Scholar 

  22. Jolley K.A., Bliss C.M., Bennett J.S., Bratcher H.B., Brehony C., Colles F.M., Wimalarathna H., Harrison O.B., Sheppard S.K., Cody A.J., Maiden M.C.J. 2012. Ribosomal multilocus sequence typing: universal characterization of bacteria from domain to strain. Microbiology (Reading). 158 (Pt 4), 1005–1015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chaumeil P.A., Mussig A.J., Hugenholtz P., Parks D.H. 2019. GTDB-Tk: A toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics. 36 (6), 1925–1927.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ruiz-GarcíaC.,BéjarV., Martínez-ChecaF., LlamasI., QuesadaE. 2005. Bacillus velezensis sp. nov., a surfactant-producing bacterium isolated from the river Vélez in Málaga, southern Spain. Int. J. Syst. Evol. Microbiol. 55 (Pt 1), 191–195.

    Article  PubMed  Google Scholar 

  25. Moeller R., Setlow P., Horneck G., Berger T., Reitz G., Rettberg P., Doherty A.J., Okayasu R., Nicholson W.L. 2008). Roles of the major, small, acid-soluble spore proteins and spore-specific and universal DNA repair mechanisms in resistance of Bacillus subtilis spores to ionizing radiation from X rays and high-energy charged-particle bombardment. J. Bacteriol. 190, 1134–1140.

    Article  CAS  PubMed  Google Scholar 

  26. Moeller R., Reitz G., Berger T., Okayasu R., Nicholson W.L., Horneck G. 2010. Astrobiological aspects of the mutagenesis of cosmic radiation on bacterial spores. Astrobiology. 10 (5), 509–521.

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Hullo M.F., Moszer I., Danchin A., Martin-Verstraete I. 2001). CotA of Bacillus subtilis is a copper-dependent laccase. J. Bacteriol. 183, 5426–5430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lenhart J.S., Schroeder J.W., Walsh B.W., Simmons L.A. 2012. DNA repair and genome maintenance in Bacillus subtilis. Microbiol. Mol. Biol. Rev. 76, 530–564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rebeil R., Sun Y., Chooback L., Pedraza-Reyes M., Kinsland C., Begley T.P., Nicholson W.L. 1998). Spore photoproduct lyase from Bacillus subtilis spores is a novel iron-sulfur DNA repair enzyme which shares features with proteins such as class III anaerobic ribonucleotide reductases and pyruvate-formate lyases. J. Bacteriol. 180, 4879–4885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liu Y., Jeraldo P., Herbert W., McDonough S., Eckloff B., de Vera J.P., Cockell C., Leya T., Baqué M., Jen J., Schulze-Makuch D., Walther-Antonio M. 2022. Non-random genetic alterations in the cyanobacterium Nostoc sp. exposed to space conditions. Sci. Rep. 12 (1), 12580.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  31. Setlow P. 2014. Spore resistance properties. Microbiol. Spectr. 2 (5), TBS-0003-2012.

    Article  Google Scholar 

  32. Chiang A.J., Mohan G.B.M., Singh N.K., Vaishampayan P.A., Kalkum M., Venkateswaran K. 2019. Alteration of proteomes in first-generation cultures of Bacillus pumilus spores exposed to outer space. mSystems. 4 (4), e00195-19. https://doi.org/10.1128/msystems.00195-19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Peyvan K., Karouia F., Cooper J.J., Chamberlain J., Suciu D., Slota M., Pohorille A. 2019. Gene expression measurement module (GEMM) for space application: design and validation. Life Sci. Space Res. 22, 55–67.

    Article  ADS  Google Scholar 

  34. Olsson-Francis K., Doran P.T., Ilyin V., Raulin F., Rettberg P., Kminek G., Mier M.Z., Coustenis A., Hedman N., Shehhi O.A., Ammannito E., Bernardini J., Fujimoto M., Grasset O., Groen F., Hayes A., Gallagher S., Kumar K. P., Mustin C., Nakamura A., Seasly E., Suzuki Y., Peng J., Prieto-Ballesteros O., Sinibaldi S., Xu K., Zaitsev M. 2023. The COSPAR planetary protection policy for robotic missions to Mars: A review of current scientific knowledge and future perspectives. Life Sci. Space Res. (Amst.). 36, 27–35.

    Article  ADS  PubMed  Google Scholar 

Download references

Funding

The work was carried out within the framework of the ISS (Science) (Science-1) Test_22 program and contract No. 2123730201782217000241851/22 - 12-640/(15–07001-2002)-07001/75–2022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Fialkina.

Ethics declarations

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fialkina, S.V., Deshevaya, E.A., Rakitin, A.L. et al. Genome Stability of Bacillus velezensis after Two-Year Exposure in Open Space. Mol Biol 58, 33–42 (2024). https://doi.org/10.1134/S0026893324010023

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893324010023

Keywords:

Navigation